OLLEGE
E FRANCE
1530

C
D

Mechanized semantics, fourth lecture

Logics to reason about programs

Xavier Leroy
2020-01-09

College de France, chair of software sciences

Reasoning about a program

Verify (with mathematical rigor) that a program or program
fragment “behaves correctly”:

* Full correctness: the program terminates and produces the
expected result.

« Partial correctness: if the program terminates, it produces
the expected result.

+ Robustness: the program does not crash (no run-time
errors), does not leak confidential information, etc.

Reasoning about a program

In principle: it suffices to have a formal semantics for the
programming language we use; then, we reason directly about
the possible executions of the program of interest.

(See examples in the Coq file HoareLogic.v)

Reasoning about a program

In principle: it suffices to have a formal semantics for the
programming language we use; then, we reason directly about
the possible executions of the program of interest.

(See examples in the Coq file HoareLogic.v)

In practice: it is much more convenient to use higher-level
reasoning principles, namely a program logic.

An idea as old as computing

Alan Turing, Checking a large routine, 1949.

Sriday, 24Lth June, .
Checking & large routine. by Dr, A, Turing.
How can ons chsck a routine in the sense of meking sure that it 1s right?
In order that the man wiw checks may not have too dirficult a task the

programaer should make a number of definite assertions which can be checked

individually, and fras which the correctncss of the whole programse easily
rfollows,

Talk given at the inaugural conference of the EDSAC computer, Cambridge
University, june 1949. The manuscript was corrected, commented and

republished by F.L. Morris and C.B. Jones in Annals of the History of Computing,
6, 1984.

Turing's “large routine”

Compute the factorial function n! using only additions.

Two nested loops.

int fac (int n)
{
int s, r, u, v;
u-=1;
for (r = 1; r < n; r++) {
v=mu; s =1;
u=u+v;
} while (s++ < 1);
}

return u;

Turing's “large routine”

No structured programming in 1949: just flowcharts.

®
)

®

©,

! vi=u HTESTr—an’=1

s~
Il
A"

Figure 1 (Redrawn from Turing’s original)

To each program point, associate a logical invariant:
a relation between the values of the variables that holds at every

execution.

STORAGE (INEFHAL) ® (STOP) ® ® ©
LOGATION k=6 k=5 | k=4 k=0 | k=3 k=1 k=2
27 s s+1 s
28 r g r P r
29 n n n n n n n
30 Ir Ir sir (s +lr s+

31 Ir In I Ir r
T0 ® T0 ©|T0 T0 ©®|1T0 ® T0®
WITH 7" =1 IFr=n WITH7 =7+ 1
u'=1 T0 ® IFs=r
IFr<n TO
WITHS =5 +1
IFs<r

Figure 2 (Redrawn from Turing’s original)

In more modern notation:

e~
nn
BT

s ¢
ﬁh—-r+1|‘ : =5

| v=r!

r<n
u=(r+M0r!

To verify the program, it suffices to check that every assertion
logically implies the assertions at successor points.

Robert Floyd, Assigning meanings to programs, 1967

18 years later, Floyd rediscovers and generalizes Turing’s idea.

nE€Jt (J7 is the set of positive integers)
nedtAi=1

nEJTAI=1AS=0
i-1

neJtAi€EJTAIisSR+IAS = Z“’i
=

i-1 n
———n€J Ai=n+1AS= Yaj;ie,S=2q;
J=1 =1

i-1
________ neJTAIEJTAISAAS= T q
J=1

________ n€JTAIEJTNisnAS=Tq;
Jj=1

-1
________ nEJtAIEJTALsisn+1IAS=2q
Jj=1

Robert Floyd, Assigning meanings to programs, 1967

Formalizes the logical rules that connect the preconditions P and
the postconditions Q of flowchart nodes.

imp P\, /P,
Qo ,/ \ Q Q

P/_\b:>Q() PiVvVP,=Q
PAb= Q4

10

Floyd's rule for assignment

Examples:

NO<Xxo <Yy

The general case:

(3x0, X = f(x0,¥) A P(x0,¥)) = Q

n

Robert Floyd, Assigning meanings to programs, 1967

Formalizes the logical rules to annotate a flowchart.

Observes that these rules define a semantics for the language.
(The birth of axiomatic semantics.)

Proves that these rules are sound with respect to an intuitive
operational semantics.

Proves that these rules are complete.
Outlines extra conditions to guarantee termination.

Outlines an extension to the Algol 60 language (structured loops).

12

C. A. R. Hoare, An axiomatic basis for computer programming, 1969

Reformulates Floyd's approach for structured control
(if/then/else, loops, ...) instead of flowcharts.

Presented by axioms and inference rules
— a logic to reason about programs
(just like Euclidean geometry is a logic to reason about figures).

13

An Axiomatic Basis for
Computer Programming

C. A. R. HoARE
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

(Communications of the ACM, 12(10), 1969)

Hoare logics

Hoare triples

The statements of Hoare logic:
[P]c[Q] {Pyc{Q}

c: command in an imperative structured language (IMP, Algol, ...)
P, Q: logical assertions about program variables.
P: precondition, assumed true “before” executing ¢

Q: postcondition, guaranteed true “after” executing ¢

15

Hoare triples

“Strong” Hoare logic: (total correctness)
[P]c[Q] if P holds “before”,
then c terminates and Q holds “after”
“Weak” Hoare logic: (partial correctness)

{P}c{Q} ifPholds “before” and if c terminates,
then Q holds “after”

16

The rules of weak Hoare logic

Structured control:

{Pta{Q} {Q}c{R}
{Paica{R}

{P/\b}C1{Q} {P/\ﬁb}Cz{Q}

{P}if bthencjelsec, {Q}

{PAb}c{P}

{P}whilebdoc{PA-b}

17

The rules of weak Hoare logic

Empty command:
{P}SKIP{P}

Assignment:
{Qx<«+ada]}x:=a{Q}

Note the “backward” style: the postcondition Q determines the
precondition.

Example

{0=0Ay<10}x:=0{x=0Ay <10}

{1<x+1<NM}x:=x+1{1<x<11}

18

The consequence rule

Enables us to replace preconditions and postconditions by
equivalent or weaker formulas.

P=P {P}c{Q@} Q@=aQ
{P}c{a}

Example
0<Xx<10=1<x+1<1
{1<x+1<N}Px:=x+1{1<x<1}
1<x<MN=1<x<M

{0<x<10}x:=x+1{1<x<11}

19

Strong Hoare logic

Same rules as for the weak logic, except for loops.

[P] SKIP[P] [Q[x < a]]x:=a[Q]
[Plc[Q] [Q]c:[R] [PAb]c[Q] [PA-b]c[Q]
[P] ci:c; [R] [P]if b then ¢y else ¢, [Q]

P=P [Plc[d] @=0Q

[P]c[Q]

20

Proving loop termination

No general rule, but one rule is often sufficient:
an expression V (the “variant”) is a nonnegative integer and
decreases strictly at every loop iteration.

VneZ, [PAbAV=n]c[PAO<V <n]

[P]while bdoc[PA—b]

21

Mechanizing Hoare logic

How should we represent logical assertions?

By a dedicated language with its own syntax and semantics.

(deep embedding)
Terms: to=x|0|1|t1+t ...
Assertions: P,Q:=t; =t |PAQ|VX.P|...
By a predicate in Coq’s logic. (shallow embedding)

P,Q : store — Prop

Example: “0 < x < y”" becomes fun s -> 0 <= s "x" < s "y".
(See the Coq file HoareLogic, sections 4.2 and 4.3)

22

Syntactic triples, semantic triples

Syntactic approach: { P} ¢ { Q} can be derived from the axioms
and inference rules of Hoare logic.

Semantic approach: { P} c {Q} holds if and only iff
Vs,s’, PsAnc/s | s = Q5.

The two notions are equivalent!

« Soundness: if { P} ¢ {Q} can be derived by Hoare’'s rules, it
is semantically true.

+ Relative completeness: if { P} ¢ { Q} is semantically true, it
can be derived from Hoare’s rules.

(See the Coq file HoareLogic, sections 4.4 and 4.5)

23

Automating Hoare logic

In general, it is undecidable whether a Hoare triple holds.
(The triple { True } ¢ { False } holds iff c does not terminate.)

However, many deduction steps in Hoare logic are directed by the
syntax of the command. For instance:

{P}xy:=as;...;xs:=an {Q}

We can apply the assignment rule n times then the consequence
rule on the left, obtaining the verification condition

P = Q[xn < ap][- - -][x¥1 < aq]

This is a first-order logical formula that lends itself well to
automated theorem proving.

24

Generating verification condition

Consider a command ¢ where while loops are manually
annotated with loop invariants Inv.

We can automatically produce a first-order logical formula
vcgen P ¢ Q that is true if and only if the triple { P} ¢ { Q } holds
in Hoare logic.

This is the approach followed by deductive verification tools such
as ESC/Java, Frama-C, KeY, Whys3, ...

(See the Coq file HoareLogics, section 4.8.)

25

Extension to arrays

Incorrect: {Q{t[a1] + a;} } tla1] := a2 {Q} X

(Not only t[a4] is modified, but also all t[a] for every a that has
the same value as a.)

Correct: {Q{t«tla1 — a3]} } tfa1] = a2 {Q} V¥V

The expression t[a; — a,] stands for an array identical to t except
that index aq has value a,.

We reason over these array expressions using the equation

a, ifa=a

(tlen = @al) [a] = tla] ifa # a

26

Extension to pointers and dynamic allocation

Example: singly-linked lists.

T 42 +—={31X] 4]

typedef struct cell * list;
struct cell { int head; list tail; };

In-place concatenation of lists 11 and 12:
p = 11;

while (p->tail != NULL) p = p->tail;
p—>tail = 12;

27

Extension to pointers and dynamic allocation

Example: singly-linked lists.

(T F—{2T 3] 4]

typedef struct cell * list;
struct cell { int head; list tail; };

In-place concatenation of lists 11 and 12:
p = 11;

while (p->tail != NULL) p = p->tail;
p—>tail = 12;

27

Pointers and linked data structures

p = 11;
while (p->tail != NULL) p = p->tail;
p—>tail = 12;

Hard to verify this code... and even to specify it!

« List 11 must be well formed (not circular)
(otherwise the while loop does not terminate).
« List 12 must not share any cell with 11
(otherwise the concatenation builds a circular list).
« Any list 13 that shares with 11 is modified.

[1] F—={2[3]] [F=2[=3[J---—=]4[]

11 12 11 13 12

28

Hoare logics for pointers

Folklore approach: a pointer = an index in a big global array
(the memory heap).

Burstall (1972), Morris (1981), Bornat (2000):
one heap per field of memory cells.

p—tail :=a Y tail = tail[p+— a] (head is unchanged)

Bornat (2000), Mehta & Nipkow (2003), Hubert & Marché (2005):

mechanization of the “one heap per field” approach;
verifications of the Schorr-Waite graph traversal algorithm.

29

Separation logics

The path to separation logic

Burstall (1972): the Distinct Nonrepeating List Systems
(~ simply-linked data structures without any sharing)
+ ad-hoc reasoning rules.

Reynolds (1999), Intuitionistic Reasoning about Shared Mutable
Data Structures. Introduces the notion of separating conjunction.

O’Hearn and Pym (1999), The Logic of Bunched Implications.
To reason about resources that are used linearly.

O’Hearn, Reynolds, Yang (2001), Local Reasoning about Programs
that Alter Data Structures. The modern presentation of
separation logic.

30

A common sense idea:
Anything that is not explicitly mentioned in { P} c{Q}is
preserved when executing c.

In Hoare logic, this principle is presented as the following frame
rule:

{Pyc{Q}

none of the variables modified by c appear in R

{PAR}c{QAR}

Example: {x =0} x:=x+1{x =1}, therefore
{x=0ANy=8}x=x+1{x=1Ay=8}.

31

Pointers and aliasing = no more local reasoning

[1[321 4]
l1 l3 12

append(ly, ;)

NI R IR ng 1N 4]
lh l3 b
P = “l; represents list [1,2,3] and [, represents list [4,5]"

Q = “l, represents list [1,2,3, 4,5]"
R = “l5 represents list [3]".

{P} append(ly,l;) {Q} is a valid triple, but not
{PAR} append(lh,l;) {QAR}.

32

Memory footprint and separating conjunction

Every logical assertion P, Q has a memory footprint:
the set of memory locations (pointers) whose contents are
described.

Example: assertion p — 0, “at location p there is value 0",
has the footprint {p}.

The separating conjunction P x Q holds if and only if

+ P holds (in the current memory state)
+ Q holds (in the current memory state)
« P and Q have disjoint memory footprints.

Example: p — 0% p — 0 is always false.
p— 0% q+— Timplies p # q.

33

Representation predicates

Using separating conjunction, we can define the predicate
list(p, L), “pointer p is the head of a well-formed linked list that
represents the abstract list L™

list(p,x :: L) = 3q, p — {head = x; tail = q} * list(q, L)

list(p, nil) = p = NULL

Separating conjunctions = no internal sharing
(all list cells are pairwise distinct).

The memory footprint of 1ist(p, L) is the set of memory
locations that are involved in the representation of L.

34

A specification in separation logic

In-place list concatenation:
for all abstract lists L, L/, assuming L is not empty,

{ list(11,L) = list(12,L") }
p=11;
while (p->tail != NULL) p = p->tail;
p->tail = 12;

{ list(11,L.L") }

Separating conjunction in the precondition
= no external sharing between 11 and 12
(no list cell in common).

Nothing about 12 in the postcondition
= 12 is no longer usable as a well-formed linked list.

35

Separating conjunction and the frame rule

The frame rule in separation logic:

{Prc{Q}

none of the variables modified by c appear in R

{PxR}c{Qx*R}

Notion of local reasoning: P, Q describe the parts of memory
relevant to the execution of ¢; R describes the other parts.

Notion of resources:

P describes the memory resources consumed by ¢;

Q describes the resources produced or returned by c;
R describes the resources untouched by c.

36

Preconditions and postconditions only mention what is relevant
to the execution of the command.

[a=n] x:=a [x=n]

—
o
I

Px(pv)] xi=xa [(x=v)%(prsv)]

=v)x(p—_)] =*a:=d

[p—v]
[emp] x := alloc(N) [3p, (x = p)

(prr)
x(p+N—1—)]

[(a=p)x(p—)] free(a) [emp]

p — _reads as “p is valid” and is defined as 3v, p — v.

37

Formalization: IMP with pointers

Commands:
c:=S8KIP |x:=a| ;¢
| if b then ¢; else ¢

| while bdoc

| x := alloc(N) allocate N words

| X :=xa read from location a
| xa1 1= a write to location a;

| free(a) free location a

Pointers are integer values = pointer arithmetic.
Example (Constructing a list)

1 := alloc(2); *1 := head; *(1 + 1) := tail
38

Operational semantics

Two components for the memory state:

« the store s: variable — value (total function)
+ the heap h: location — value (partial, finite function)
Reduction semantics: ¢/s/h — c¢’/s'/h’.
Some representative rules:
x:=a/s/h — SKIP/s[x « [a] s|/h
X :=x*a/s/h — SKIP/s[x < v]/h if h([a] s) =v
xa := a'/s/h — SKIP/s/h[[a] s < [d'] s] if[a] s € dom(h)

39

A separation logic for IMP

Logical assertions = predicates store — heap — Prop.
Basic strong triples :

[P]c[Q] “ vs,h, Psh= 35,1, c/s/h = skip/s'/h' AQs' h

Fail to validate the frame rule (because of dynamic allocation).

Strong triples:
Pl ciall & VR unchanged by c,[P+R]c[Q*R]

Validate the frame rule.

(See Coq file SepLogic and A. Charguéraud’s seminar Jan. 16th.)

40

Extension: concurrent separation logic

(O’Hearn, 2007, Resources, Concurrency and Local Reasoning.
Brookes, 2007, A Semantics for Concurrent Separation Logic.)

Context: shared-memory concurrency
(threads, multicore processors, etc).
Base rule: parallel execution without interference.
{Pita{@} {P}c{Q}
{PixP}cr |2 {QixQ:}

A

Synchronization and communication

Various rules to account for synchronization and communication
between threads:

« High level: locks, semaphores, message queues, ...

« Low level: memory barriers, compare-and-swap,
load-acquire/store-release, ...

42

A concurrent separation logic for locks

To a lock L we associate an assertion INV(L):

« The footprint of INV(L) describes the memory locations that
are protected by the lock.

« The assertion INV(L) describes the invariant that users of
these protected locations must preserve.

Small rules for locks:

{emp} lock(L) {INV(L)* Locked(L)}
{INV(L) = Locked(L) } unlock(L) {emp}

Holding the lock = being the sole owner of protected locations.
Unlocking the lock = being obliged to restore the invariant.

43

Summary and perspectives

Two viewpoints that coexist nicely:

- Axiomatic viewpoint: a program logic defines the semantics
of the programming language.

- Operational viewpoint: a program logic is a set of theorems
about the operational semantics of the language, theorems
which facilitate reasoning about programs.

44

The basic principles have been known for a long time,
and have remained purely theoretical for a long time,

but are now usable in practice thanks to tools:

+ Deductive verifiers + automatic theorem provers:
KeY, Frama-C WP, Infer, ...

- Embeddings in Coq and other interactive theorem provers:
CFML, IRIS, ...

45

A very active research area:

+ More automation for program proof.
(E.g. INFER and “bi-abduction”; shape analyses.)

- More abstraction in program logics.
(E.g. IRIS: monoid + invariants = a concurrent logic)

- Reasoning on other kinds of resources.
(E.g. file systems, execution time.)

 Reasoning on hardware-level concurrency.
(Weakly-consistent memory models.)

46

References

References

Hoare logic and its mechanization:

« Benjamin Pierce et al, Software Foundations, volume 2:
Programming Languages Foundations, chapters Hoare logic.

« Tobias Nipkow et Gerwin Klein, Concrete Semantics, chap. 12.
An introduction to separation logic:
« Peter O’'Hearn, Separation Logic, CACM 62(2), 2019.

Lectures on concurrent separation logics:

+ Aleks Nanevski, Separation Logic and Concurrency, OPLSS 2016.

« Lars Birkedal, Ales Bizjak, Lecture Notes on Iris: Higher-Order
Concurrent Separation Logic, 2018.

47

	Hoare logics
	Separation logics
	Summary and perspectives
	References

