
Mechanized semantics, fourth lecture

Logics to reason about programs

Xavier Leroy
2020-01-09
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Reasoning about a program

Verify (with mathematical rigor) that a program or program
fragment “behaves correctly”:

• Full correctness: the program terminates and produces the
expected result.

• Partial correctness: if the program terminates, it produces
the expected result.

• Robustness: the program does not crash (no run-time
errors), does not leak confidential information, etc.
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Reasoning about a program

In principle: it su�ces to have a formal semantics for the
programming language we use; then, we reason directly about
the possible executions of the program of interest.

(See examples in the Coq file HoareLogic.v)

In practice: it is much more convenient to use higher-level
reasoning principles, namely a program logic.
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An idea as old as computing

Alan Turing, Checking a large routine, 1949.

Talk given at the inaugural conference of the EDSAC computer, Cambridge

University, june 1949. The manuscript was corrected, commented and

republished by F.L. Morris and C.B. Jones in Annals of the History of Computing,

6, 1984.
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Turing’s “large routine”

Compute the factorial function n! using only additions.

Two nested loops.

int fac (int n)

{

int s, r, u, v;

u = 1;

for (r = 1; r < n; r++) {

v = u; s = 1;

do {

u = u + v;

} while (s++ < r);

}

return u;

}
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Turing’s “large routine”

No structured programming in 1949: just flowcharts.F. L. Morris & C. B. Jones * Turing Proof 
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Figure 1 (Redrawn from Turing’s original) 

Conference Discussion (from page 70 of the conference 
report) 

Prof. Hartree said that he thought that Dr Turing had 
used the terms “induction” and “inductive variable” in a 
misleading sense since to most mathematicians induction 
would suggest “mathematical induction” whereas the pro- 
cess so called by von Neumann and Turing often consisted 
of repetition without logical connection. Prof. Newman sug- 
gested that the term “recursive variable” should be used. Dr 
Turing, however, still thought that his original terminology 
could be justified. 

Comments 

The contributors to the conference discussion were 

M. H. A. Newman, then professor of pure mathematics 
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at Manchester University, who had played a leading 

part in setting up the Manchester computer project, 

and D. R. Hartree, then professor of mathematical 

physics at Cambridge University, who had been a 

moving force both at the NPL and at Cambridge. 
We now turn to a discussion of Turing’s proof 

method. Present methods might combine Turing’s 

Figures 1 and 2 into a flowchart that includes the 

assertions. Figure A is an annotated flowchart in the 

style of Floyd (1967). Two significant differences be- 

tween Figure A and Turing’s presentation may be 

observed. 

1. In the Floyd style, assertions may be any propo- 

sitions relating the values of the variables to each 

Figure 2 (Redrawn from Turing’s original) 

Annals of the History of Computing, Volume 6, Number 2, April 1984 l 141 
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Turing’s genius idea

To each program point, associate a logical invariant:
a relation between the values of the variables that holds at every
execution.

F. L. Morris & C. B. Jones * Turing Proof 
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Turing’s genius idea

In more modern notation:

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof 
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other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare 
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this 
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con- 
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s 
ing is necessary for inferring the u = n! claim at D ingenuity. 
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s 
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’ 
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the 
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as 

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because 

(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition 
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec- 
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was 
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no 
of as a directly executable statement; the level of coding system sufficiently generally known,” and that 
necessary representation of quantities and implemen- what Turing had in mind to be passed between the 
tation of operations lying below the atomic statements programmer and the checker was the actual code of a 
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with 
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no 
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre- 
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo- 
current value. cation 27, and the behavior of the variable s, belonging 

The most striking discrepancy between the two solely to the assertions, which increased-as might 
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point 
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled. 
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns 
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear 
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions 
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary 

142 l Annals of the History of Computing, Volume 6, Number 2, April 1984 

To verify the program, it su�ces to check that every assertion
logically implies the assertions at successor points.
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Robert Floyd, Assigning meanings to programs, 1967

18 years later, Floyd rediscovers and generalizes Turing’s idea.

programs in the language, appear to be novel, although McCarthy ll, 2] 
has done similar work for programming languages based on evaluation of 
recursive functions. 

A semantic definition of a programming language, in our approach, is 
founded on a syntactic definition. It must specify which of the phrases 
in a syntactically correct program represent commands, and what conditions 
must be imposed on an interpretation in the neighborhood of each command. 

We will demonstrate these notions, first on a flowchart language, then 
on fragments of ALGOL. 

DEFINITIONS. A flowchart will be loosely defined as a directed graph 
with a command at each vertex, connected by edges (arrows) representing 
the possible passages of control between the commands. An edge is said 
to be an entrance to (or an exit from) the command c at vertex v if its 
destination (or origin) is v. An interpretation I of a flowchart is a mapping 
of its edges on propositions. Some, but not necessarily all, of the free 
variables of these propositions may be variables manipulated by the 
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FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0) 
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Robert Floyd, Assigning meanings to programs, 1967

Formalizes the logical rules that connect the preconditions P and
the postconditions Q of flowchart nodes.

b ?
P

Q0 Q1

P ∧ ¬b⇒ Q0
P ∧ b⇒ Q1

P1 P2

Q

P1 ∨ P2 ⇒ Q
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Floyd’s rule for assignment

x := 0

y ≤ 10

x = 0
∧ y ≤ 10

x := 0

y = 2x

x = 0
∧ ∃x0, y = 2x0

x := x + 1

0 ≤ x ≤ y

∃x0, x = x0 + 1
∧ 0 ≤ x0 ≤ y

x := f (x,~y)

P(x,~y)

Q

(∃x0, x = f (x0,~y) ∧ P(x0,~y))⇒ Q

Examples:

The general case:
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Robert Floyd, Assigning meanings to programs, 1967

Formalizes the logical rules to annotate a flowchart.

Observes that these rules define a semantics for the language.
(The birth of axiomatic semantics.)

Proves that these rules are sound with respect to an intuitive
operational semantics.

Proves that these rules are complete.

Outlines extra conditions to guarantee termination.

Outlines an extension to the Algol 60 language (structured loops).
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C. A. R. Hoare, An axiomatic basis for computer programming, 1969

Reformulates Floyd’s approach for structured control
(if/then/else, loops, . . . ) instead of flowcharts.

Presented by axioms and inference rules
→ a logic to reason about programs
(just like Euclidean geometry is a logic to reason about figures).
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An Axiomatic Bas is  for 
Computer Programming 

C. A. R . HOARE 
The  Queen's  Unive rs ity of Be lfas t,* Northe rn Ire land 

In this paper an attempt is made to explore the logical founda- 
tions of computer programming by use of techniques which 
were first applied in the study of geometry and have later 
been extended to other branches of mathematics. This in- 
volves the elucidation of sets of axioms and rules of inference 
which can be used in proofs of the properties of computer 
programs. Examples are given of such axioms and rules, and 
a formal proof of  a simple theorem is displayed. Finally, it is 
argued that important advantages, both theoretical and prac- 
tical, may follow f rom a pursuance of  these topics. 

KEY WORDS AND PHRASES: axiomatic method, theory of programming' 
proofs of programs, formal language definition, programming language 
design, machine-independent programming, program documentation 
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24 

1. Intro duc tio n 
C o m p u te r  p ro g ra m m in g  is  a n  e xa c t s c ie nce  in  th a t  a ll 

th e  p ro p e rtie s  of a  p ro g ra m  a n d  a ll th e  cons e que nce s  of 
e xe c u tin g  it  in  a n y g ive n  e n viro n m e n t ca n, in  p rinc ip le ,  
be  fo u n d  o u t fro m  th e  te xt of th e  p ro g ra m  its e lf b y m e a n s  
of p u re ly d e d u c tive  re a s on ing . De d u c tive  re a s on ing  in- 
vo lve s  th e  a p p lic a tio n  o f va lid  ru le s  o f in fe re nce  to  s e ts  o f 
va lid  a xioms . It  is  th e re fo re  de s ira b le  a n d  in te re s tin g  to  
e lu c id a te  th e  a xioms  a n d  ru le s  of in fe re nce  wh ich  u n d e rlie  
o u r re a s on ing  a b o u t c o m p u te r p ro g ra m s .  Th e  e xa c t cho ice  
of a xioms  will to  s ome  e xte n t d e p e n d  o n  th e  cho ice  of 
p ro g ra m m in g  la ngua ge . F o r illu s tra tive  pu rpos e s ,  th is  
p a p e r is  confine d  to  a  ve ry s imple  la ngua ge , wh ich  is  e ffe c- 
tive ly a  s ubs e t o f a ll e u rre n t p ro c e d u re -o rie n te d  la ngua ge s .  

2. Co mpute r Arithme tic  
Th e  firs t re q u ire m e n t in  va lid  re a s on ing  a b o u t a  p ro - 

g ra m  is  to  kn o w th e  p ro p e rtie s  of th e  e le m e n ta ry o p e ra tio n s  
wh ich  it  invoke s ,  fo r e xa mple ,  a d d itio n  a n d  m u ltip lic a tio n  
of in te ge rs .  Un fo rtu n a te ly,  in  s e ve ra l re s pe c ts  c o m p u te r 
a rith m e tic  is  n o t th e  s a me  a s  th e  a rith m e tic  fa milia r to  
m a th e m a tic ia n s ,  a n d  it  is  n e c e s s a ry to  e xe rc is e  s ome  ca re  
in  s e le c ting  a n  a p p ro p ria te  s e t of a xioms . F o r e xa mple ,  th e  
a xioms  d is p la ye d  in  Ta b le  I a re  ra th e r a  s ma ll s e le c tion  
of a xioms  re le va n t to  in te ge rs .  F ro m  th is  in c o m p le te  s e t 

* De purtme nt of Compute r Science  

of a xioms  it is  pos s ib le  to  de duce  s uch  s imple  th e o re m s  a s : 

x =x +y X O  

y <r ~ r +y  X q = ( r-  y ) +y  X (1 + q )  

Th e  p ro o f of th e  s e cond  of th e s e  is : 

A5 ( r- - y )  + y X ( l+ q )  

= ( r- - y ) + ( y X l+y X q )  

A9 = ( r - -  y) + (y + y  X q) 

A3 = ( ( r- - y ) +y ) +y X q  

A6 = r + y X q p ro v id e d y  < r 

Th e  a xioms  A1 to  A9 a re , of cours e , tru e  o f th e  tra d i- 
tio n a l in fin ite  s e t of in te ge rs  in  m a th e m a tic s .  Ho we ve r,  
th e y a re  a ls o tru e  of th e  fin ite  s e ts  of "in te g e rs " wh ich  a re  
m a n ip u la te d  b y c o m p u te rs  p ro vid e d  th a t  th e y a re  con- 
fine d  to  nonnegative  n u m b e rs .  Th e ir  t ru th  is  in d e p e n d e n t 
o f th e  s ize  of th e  s e t; fu rth e rm o re ,  it is  la rge ly in d e p e n d e n t 
of th e  cho ice  o f te c h n iq u e  a pp lie d  in  th e  e ve n t o f "o ve r- 
flow"; fo r e xa mp le : 

(1 ) S tric t in te rp re ta tio n : th e  re s u lt of a n  ove rflowing  
o p e ra tio n  doe s  n o t e xis t; wh e n  ove rflow occurs , th e  o ffe nd- 
ing  p ro g ra m  n e ve r comple te s  its  o p e ra tio n .  No te  th a t  in  
th is  ca s e , th e  e qua litie s  of A1 to  A9 a re  s tric t,  in  th e  s e ns e  
th a t  b o th  s ide s  e xis t o r fa il to  e xis t to g e th e r.  

(2 ) F irm  b o u n d a ry:  th e  re s u lt of a n  ove rflowing  o p e ra - 
tio n  is  ta ke n  a s  th e  m a xim u m  va lu e  re p re s e n te d .  

(3 ) Mo d u lo  a rith m e tic : th e  re s u lt o f a n  ove rflowing  
o p e ra tio n  is  c o m p u te d  m o d u lo  th e  s ize  o f th e  s e t o f in te ge rs  
re p re s e n te d .  

Th e s e  th re e  te c h n iq u e s  a re  illu s tra te d  in  Ta b le  II b y 
a d d itio n  a n d  m u ltip lic a tio n  ta b le s  fo r a  trivia lly s ma ll 
mode l in  wh ich  0, 1, 2, a n d  3 a re  th e  o n ly in te ge rs  re p re - 
s e n te d .  

It  is  in te re s tin g  to  n o te  th a t  th e  d iffe re n t s ys te m s  s a tis fy- 
ing  a xioms  A1 to  A9 m a y b e  rigo rous ly d is tingu is he d  fro m  
e a c h  o th e r b y choos ing  a  p a rtic u la r one  o f a  s e t of m u tu a lly 
e xc lus ive  s u p p le m e n ta ry a xioms . F o r  e xa mple ,  in fin ite  
a rith m e tic  s a tis fie s  th e  a xio m : 

A10z ~ 3 x V y  (y < x ),  

wh e re  a ll fin ite  a rith m e tic s  s a tis fy: 

A10~ Vx (x < m a x) 

whe re  "m ax" d e n o te s  th e  la rge s t in te g e r re p re s e n te d .  
S imila rly,  th e  th re e  tre a tm e n ts  o f ove rflow m a y be  

d is tingu is he d  b y a  cho ice  o f one  o f th e  fo llowing  a Moms  
re la tin g  to  th e  va lu e  of m a x + 1: 

Alls  ~ 3 x  (x = m a x + 1) (s tric t in te rp re ta tio n ) 

All,  m a x + 1 = m a x (firm b o u n d a ry)  

AllM m a x + 1 = 0 (modu lo  a rith m e tic ) 

Ha vin g  s e le c te d  one  o f th e s e  a xioms , it  is  pos s ib le  to  
us e  it  in  d e d u c in g  th e  p ro p e rtie s  of p ro g ra m s ; h o we ve r,  

576 C o m m u n ic a tio n s  o f th e  ACM Volume  12 / Nu m b e r 10 / O c to b e r,  1969 

(Communications of the ACM, 12(10), 1969)
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Hoare logics



Hoare triples

The statements of Hoare logic:

[ P ] c [Q ] { P } c {Q }

c: command in an imperative structured language (IMP, Algol, . . . )

P, Q: logical assertions about program variables.

P: precondition, assumed true “before” executing c

Q: postcondition, guaranteed true “after” executing c

15



Hoare triples

“Strong” Hoare logic: (total correctness)

[ P ] c [Q ] if P holds “before”,
then c terminates and Q holds “after”

“Weak” Hoare logic: (partial correctness)

{ P } c {Q } if P holds “before” and if c terminates,
then Q holds “after”

16



The rules of weak Hoare logic

Structured control:

{ P } c1 {Q } {Q } c2 {R }

{ P } c1; c2 {R }

{ P ∧ b } c1 {Q } { P ∧ ¬b } c2 {Q }

{ P } if b then c1 else c2 {Q }

{ P ∧ b } c { P }

{ P } while b do c { P ∧ ¬b }

17



The rules of weak Hoare logic

Empty command:
{ P } SKIP { P }

Assignment:
{Q[x← a] } x := a {Q }

Note the “backward” style: the postcondition Q determines the
precondition.

Example

{ 0 = 0 ∧ y ≤ 10 } x := 0 { x = 0 ∧ y ≤ 10 }

{ 1 ≤ x + 1 ≤ 11 } x := x + 1 { 1 ≤ x ≤ 11 }

18



The consequence rule

Enables us to replace preconditions and postconditions by
equivalent or weaker formulas.

P⇒ P′ { P′ } c {Q′ } Q′ ⇒ Q

{ P } c {Q }

Example
0 ≤ x ≤ 10⇒ 1 ≤ x + 1 ≤ 11

{ 1 ≤ x + 1 ≤ 11 } x := x + 1 { 1 ≤ x ≤ 11 }
1 ≤ x ≤ 11⇒ 1 ≤ x ≤ 11

{ 0 ≤ x ≤ 10 } x := x + 1 { 1 ≤ x ≤ 11 }

19



Strong Hoare logic

Same rules as for the weak logic, except for loops.

[ P ] SKIP [ P ] [Q[x← a] ] x := a [Q ]

[ P ] c1 [Q ] [Q ] c2 [R ]

[ P ] c1; c2 [R ]

[ P ∧ b ] c1 [Q ] [ P ∧ ¬b ] c2 [Q ]

[ P ] if b then c1 else c2 [Q ]

P⇒ P′ [ P′ ] c [Q′ ] Q′ ⇒ Q

[ P ] c [Q ]

20



Proving loop termination

No general rule, but one rule is often su�cient:
an expression V (the “variant”) is a nonnegative integer and
decreases strictly at every loop iteration.

∀n ∈ Z, [ P ∧ b ∧ V = n ] c [ P ∧ 0 ≤ V < n ]

[ P ] while b do c [ P ∧ ¬b ]

21



Mechanizing Hoare logic

How should we represent logical assertions?

By a dedicated language with its own syntax and semantics.
(deep embedding)

Terms: t ::= x | 0 | 1 | t1 + t2 | . . .
Assertions: P,Q ::= t1 = t2 | P ∧ Q | ∀x.P | . . .

By a predicate in Coq’s logic. (shallow embedding)

P,Q : store→ Prop

Example: “0 ≤ x < y” becomes fun s -> 0 <= s "x" < s "y".

(See the Coq file HoareLogic, sections 4.2 and 4.3)
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Syntactic triples, semantic triples

Syntactic approach: { P } c {Q } can be derived from the axioms
and inference rules of Hoare logic.

Semantic approach: { P } c {Q } holds if and only i�
∀s, s′, P s ∧ c/s ⇓ s′ ⇒ Q s′.

The two notions are equivalent!

• Soundness: if { P } c {Q } can be derived by Hoare’s rules, it
is semantically true.

• Relative completeness: if { P } c {Q } is semantically true, it
can be derived from Hoare’s rules.

(See the Coq file HoareLogic, sections 4.4 and 4.5)
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Automating Hoare logic

In general, it is undecidable whether a Hoare triple holds.
(The triple { True } c { False } holds i� c does not terminate.)

However, many deduction steps in Hoare logic are directed by the
syntax of the command. For instance:

{ P } x1 := a1; . . . ; xn := an {Q }

We can apply the assignment rule n times then the consequence
rule on the left, obtaining the verification condition

P⇒ Q[xn ← an][· · · ][x1 ← a1]

This is a first-order logical formula that lends itself well to
automated theorem proving.
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Generating verification condition

Consider a command c where while loops are manually
annotated with loop invariants Inv.

We can automatically produce a first-order logical formula
vcgen P c Q that is true if and only if the triple { P } c {Q } holds
in Hoare logic.

This is the approach followed by deductive verification tools such
as ESC/Java, Frama-C, KeY, Why3, . . .

(See the Coq file HoareLogics, section 4.8.)
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Extension to arrays

Incorrect: {Q{t[a1]← a2} } t[a1] := a2 {Q } 8

(Not only t[a1] is modified, but also all t[a] for every a that has
the same value as a1.)

Correct: {Q{t← t[a1 7→ a2]} } t[a1] := a2 {Q } 4

The expression t[a1 7→ a2] stands for an array identical to t except
that index a1 has value a2.

We reason over these array expressions using the equation

(t[a1 7→ a2]) [a] =

a2 if a = a1

t[a] if a 6= a1
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Extension to pointers and dynamic allocation

Example: singly-linked lists.

1 2 3 × 4 5 ×

typedef struct cell * list;

struct cell { int head; list tail; };

In-place concatenation of lists l1 and l2:

p = l1;

while (p->tail != NULL) p = p->tail;

p->tail = l2;
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Pointers and linked data structures

p = l1;

while (p->tail != NULL) p = p->tail;

p->tail = l2;

Hard to verify this code. . . and even to specify it!

• List l1 must be well formed (not circular)
(otherwise the while loop does not terminate).

• List l2 must not share any cell with l1

(otherwise the concatenation builds a circular list).
• Any list l3 that shares with l1 is modified.

1 2 3 1 2 3 4 5

l1 l2 l1 l3 l2

×
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Hoare logics for pointers

Folklore approach: a pointer = an index in a big global array
(the memory heap).

Burstall (1972), Morris (1981), Bornat (2000):
one heap per field of memory cells.

p→tail := a def
= tail := tail[p 7→ a] (head is unchanged)

Bornat (2000), Mehta & Nipkow (2003), Hubert & Marché (2005):
mechanization of the “one heap per field” approach;
verifications of the Schorr-Waite graph traversal algorithm.
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Separation logics



The path to separation logic

Burstall (1972): the Distinct Nonrepeating List Systems
(≈ simply-linked data structures without any sharing)
+ ad-hoc reasoning rules.

Reynolds (1999), Intuitionistic Reasoning about Shared Mutable
Data Structures. Introduces the notion of separating conjunction.

O’Hearn and Pym (1999), The Logic of Bunched Implications.
To reason about resources that are used linearly.

O’Hearn, Reynolds, Yang (2001), Local Reasoning about Programs
that Alter Data Structures. The modern presentation of
separation logic.
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Local reasoning

A common sense idea:
Anything that is not explicitly mentioned in { P } c {Q } is
preserved when executing c.

In Hoare logic, this principle is presented as the following frame
rule:

{ P } c {Q }
none of the variables modified by c appear in R

{ P ∧ R } c {Q ∧ R }

Example: { x = 0 } x := x + 1 { x = 1 }, therefore
{ x = 0 ∧ y = 8 } x := x + 1 { x = 1 ∧ y = 8 }.
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Pointers and aliasing⇒ no more local reasoning

1 2 3 4 5

l1 l3 l2

× ×

1 2 3 4 5

l1 l3 l2

×

append(l1, l2)

P = “l1 represents list [1, 2, 3] and l2 represents list [4, 5]”
Q = “l1 represents list [1, 2, 3, 4, 5]”
R = “l3 represents list [3]”.

{ P } append(l1, l2) {Q } is a valid triple, but not
{ P ∧ R } append(l1, l2) {Q ∧ R }.

32



Memory footprint and separating conjunction

Every logical assertion P,Q has a memory footprint:
the set of memory locations (pointers) whose contents are
described.

Example: assertion p 7→ 0, “at location p there is value 0”,
has the footprint {p}.

The separating conjunction P ∗ Q holds if and only if

• P holds (in the current memory state)
• Q holds (in the current memory state)
• P and Q have disjoint memory footprints.

Example: p 7→ 0 ∗ p 7→ 0 is always false.
p 7→ 0 ∗ q 7→ 1 implies p 6= q.
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Representation predicates

Using separating conjunction, we can define the predicate
list(p, L), “pointer p is the head of a well-formed linked list that
represents the abstract list L”:

list(p, x :: L) = ∃q, p 7→ {head = x; tail = q} ∗ list(q, L)
list(p, nil) = p = NULL

Separating conjunctions⇒ no internal sharing
(all list cells are pairwise distinct).

The memory footprint of list(p, L) is the set of memory
locations that are involved in the representation of L.
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A specification in separation logic

In-place list concatenation:
for all abstract lists L, L′, assuming L is not empty,

{ list(l1, L) ∗ list(l2, L′) }
p = l1;

while (p->tail != NULL) p = p->tail;

p->tail = l2;

{ list(l1, L.L′) }

Separating conjunction in the precondition
⇒ no external sharing between l1 and l2

(no list cell in common).

Nothing about l2 in the postcondition
⇒ l2 is no longer usable as a well-formed linked list.
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Separating conjunction and the frame rule

The frame rule in separation logic:

{ P } c {Q }
none of the variables modified by c appear in R

{ P ∗ R } c {Q ∗ R }

Notion of local reasoning: P, Q describe the parts of memory
relevant to the execution of c; R describes the other parts.

Notion of resources:
P describes the memory resources consumed by c;
Q describes the resources produced or returned by c;
R describes the resources untouched by c.
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“Small rules”

Preconditions and postconditions only mention what is relevant
to the execution of the command.

[ a = n ] x := a [ x = n ]

[ (a = p) ∗ (p 7→ v) ] x := ∗a [ (x = v) ∗ (p 7→ v) ]

[ (a = p) ∗ (a′ = v) ∗ (p 7→ ) ] ∗a := a′ [ p 7→ v ]

[ emp ] x := alloc(N) [∃p, (x = p)
∗ (p 7→ ) ∗ · · ·
∗ (p+ N− 1 7→ ) ]

[ (a = p) ∗ (p 7→ ) ] free(a) [ emp ]

p 7→ reads as “p is valid” and is defined as ∃v, p 7→ v.
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Formalization: IMP with pointers

Commands:
c ::= SKIP | x := a | c1; c2

| if b then c1 else c2

| while b do c
| x := alloc(N) allocate N words
| x := ∗a read from location a
| ∗a1 := a2 write to location a1

| free(a) free location a

Pointers are integer values⇒ pointer arithmetic.

Example (Constructing a list)

l := alloc(2); *l := head; *(l + 1) := tail
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Operational semantics

Two components for the memory state:

• the store s: variable 7→ value (total function)
• the heap h: location 7→ value (partial, finite function)

Reduction semantics: c/s/h→ c′/s′/h′.

Some representative rules:

x := a/s/h→ SKIP/s[x← [[a]] s]/h

x := ∗a/s/h→ SKIP/s[x← v]/h if h([[a]] s) = v

∗a := a′/s/h→ SKIP/s/h[[[a]] s← [[a′]] s] if [[a]] s ∈ dom(h)
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A separation logic for IMP

Logical assertions = predicates store→ heap→ Prop.

Basic strong triples :

[ P ] c [Q ]
def
= ∀s, h, P s h⇒ ∃s′, h′, c/s/h ∗→ SKIP/s′/h′ ∧ Q s′ h′

Fail to validate the frame rule (because of dynamic allocation).

Strong triples:

[[ P ]] c [[Q ]]
def
= ∀R unchanged by c, [ P ∗ R ] c [Q ∗ R ]

Validate the frame rule.

(See Coq file SepLogic and A. Charguéraud’s seminar Jan. 16th.)
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Extension: concurrent separation logic

(O’Hearn, 2007, Resources, Concurrency and Local Reasoning.
Brookes, 2007, A Semantics for Concurrent Separation Logic.)

Context: shared-memory concurrency
(threads, multicore processors, etc).

Base rule: parallel execution without interference.

{ P1 } c1 {Q1 } { P2 } c2 {Q2 }

{ P1 ∗ P2 } c1 ‖ c2 {Q1 ∗ Q2 }
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Synchronization and communication

Various rules to account for synchronization and communication
between threads:

• High level: locks, semaphores, message queues, . . .
• Low level: memory barriers, compare-and-swap,

load-acquire/store-release, . . .
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A concurrent separation logic for locks

To a lock L we associate an assertion INV(L):

• The footprint of INV(L) describes the memory locations that
are protected by the lock.

• The assertion INV(L) describes the invariant that users of
these protected locations must preserve.

Small rules for locks:

{ emp } lock(L) { INV(L) ∗ Locked(L) }
{ INV(L) ∗ Locked(L) } unlock(L) { emp }

Holding the lock = being the sole owner of protected locations.
Unlocking the lock = being obliged to restore the invariant.
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Summary and perspectives



Summary

Two viewpoints that coexist nicely:

• Axiomatic viewpoint: a program logic defines the semantics
of the programming language.

• Operational viewpoint: a program logic is a set of theorems
about the operational semantics of the language, theorems
which facilitate reasoning about programs.
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Summary

The basic principles have been known for a long time,

and have remained purely theoretical for a long time,

but are now usable in practice thanks to tools:

• Deductive verifiers + automatic theorem provers:
KeY, Frama-C WP, Infer, . . .

• Embeddings in Coq and other interactive theorem provers:
CFML, IRIS, . . .
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Perspectives

A very active research area:

• More automation for program proof.
(E.g. INFER and “bi-abduction”; shape analyses.)

• More abstraction in program logics.
(E.g. IRIS: monoı̈d + invariants = a concurrent logic)

• Reasoning on other kinds of resources.
(E.g. file systems, execution time.)

• Reasoning on hardware-level concurrency.
(Weakly-consistent memory models.)
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