
Mechanized semantics, second lecture

Traduttore, traditore:
formal verification of a compiler

Xavier Leroy
2019-12-12

Collège de France, chair of software sciences

Compilation

Generally speaking: any automated translation from a computer
language to another.

More specifically: an automated translation

• from a source language usable by programmers
• to a machine language executable by machines
• paying attention to e�ciency: execution speed, code size,

energy consumption.

2

A historical perspective on compilation

1940 1950 1960 1970 1980 1990 2000
Expressiveness of machine languages

Complexity of applications

Expressiveness of programming languages

Compilation

Programming

3

The first compilers

1953 The A-0, A-1, A-2 autocoders (G. Hopper, Rand Remington)
“I had a running compiler and nobody would touch it because,
they carefully told me, computers could only do arithmetic; they
could not do programs”

1957 The Fortran 1 translator (J. Backus et al, IBM)
First compiler featuring loop optimizations.

1960 First Algol 60 compiler (E. Dijkstra, U. Amsterdam)
Using a stack to implement recursion and call by name.

1962 First Lisp compiler (T. Hart et M. Levin, MIT)
First bootstrapped (self-hosting) compiler.

4

Trends in compilation

1970’s Automatic generation of syntactic analyzers
(e.g. lex for lexers, yacc for parsers).

1980’s The RISC approach: register allocation, instruction
scheduling.

1990’s The Static Single Assignment (SSA) intermediate
representation.

2000’s Dynamic, optimized compilation of scripting languages
(JavaScript engines).

5

Compilation, today

A mature area of computer science.

Large corpus of algorithms for code generation and optimization.

Many compilers (free or closed-source) that implement subtle
code transformations.

6

An example of optimizing compilation

~a · ~b =
i<n∑
i=0

aibi

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled with a good optimizing compiler, then manually
decompiled back to C.

7

double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}
8

double dotproduct(int n, double a[], double b[]) {

dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}

8

double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}
8

The miscompilation risk

Miscompilation: production of wrong executable code from a
correct source program.

We tested thirteen production-quality C compilers and, for
each, found situations in which the compiler generated incor-
rect code for accessing volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a ran-
domized test-case generation tool, and spent three years using
it to find compiler bugs. During this period we reported more
than 325 previously unknown bugs to compiler developers. Ev-
ery compiler we tested was found to crash and also to silently
generate wrong code when presented with valid input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011

9

Formal verification of compilers

Compilers are complicated programs, but have a rather simple
“end-to-end” specification:

The generated code must execute as prescribed by the se-
mantics of the source program.

This specification becomes mathematically precise as soon as we
have formal semantics for the source language and the machine
language.

Then, a formal verification of a compiler can be considered.

10

An old idea. . .

Mathematical Aspects of Computer Science, 1967

11

An old idea. . .

Machine Intelligence (7), 1972. 12

An old idea. . .

Even proof scripts look familiar!

13

In this lecture

In this lecture, we complete Milner and Weyrauch’s agenda: the
formal verification (in Coq) of a non-optimizing compiler for a
simple imperative language (IMP).

We identify a number of approaches that extend all the way to
the verification of compilers for “real-world” languages
(CompCert, CakeML).

The next lecture will study code optimizations and their
verification.

14

The IMP virtual machine

Virtual machines

Producing machine code for existing processors (x86, ARM, . . .) is
delicate.

Many compilers (Java, C#, . . .) use a virtual machine as an
intermediate step between source language and machine code.

Like a real machine, a virtual machine executes sequences of
simple instructions: no compound expressions, no control
structures.

The instructions of a virtual machine are not directly executable
by hardware, but are chosen to match the base operations of the
source language.

15

The IMP virtual machine

Four components:

• The code C: a list of instructions.

• The code pointer pc: an integer giving the position of the
currently-executing instruction in C.

• The store s: associating a value to each variable.

• The stack σ: a list of integer values
(used to save intermediate results)

(Inspired by old HP pocket calculators and by the Java Virtual
Machine.)

16

The instruction set

i ::= Iconst(n) push integer n
| Ivar(x) push the value of x
| Isetvar(x) pop a value, assign it to x
| Iadd pop two values, push their sum
| Iopp pop one value, push its opposite
| Ibranch(δ) unconditional branch
| Ibeq(δ1, δ0) pop two values, branch δ1 if =, δ0 if 6=
| Ible(δ1, δ0) pop two values, branch δ1 if ≤, δ0 if >
| Ihalt end of execution

All instructions increment pc by 1, except branch instructions,
which increment pc by 1 + δ.

(δ is a branch o�set relative to the following instruction.) 17

Example

pile ε 12
1
12 13 ε

état x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 13

p.c. 0 1 2 3 4

code Ivar(x); Iconst(1); Iadd; Isetvar(x); Ibranch(−5)

18

Semantics of the machine

Defined in operational style as a transition relation representing
the execution of one instruction.

The instruction being executed is the one from code C at position
pc.

Definition code := list instruction.

Definition stack := list Z.

Definition config : Type := (Z * stack * store)%type.

Inductive transition (C: code): config -> config -> Prop :=

...

(See Coq file Compil.v.)

19

Execution of a program

As a sequence of transitions:

• Initial configuration:
pc = 0, initial store, empty stack.

• Final configuration:
pc points to a Ihalt instruction, empty stack.

20

The compiler

Compiling arithmetic expressions

Contract: if a evaluates to value n in store s,

compiled code for a

pc
σ

s
Before:

pc′ = pc + |code|
n :: σ

s
After:

Compilation is translation to “reverse Polish notation”.

(Coq function: compile_aexp)

21

Compiling arithmetic expressions

A base case: if a = x,

Ivar(x)

pc
σ

s

pc′ = pc + 1
s(x) :: σ
s

A recursive case: if a = a1 + a2,

code for a1 code for a2 Iadd

pc
σ

s

pc′

n1 :: σ

s

pc′′

n2 :: n1 :: σ

s

pc′′ + 1
(n1 + n2) :: σ

s

22

Compiling Boolean expressions

Contract: compile bexp b δ1 δ0 should
skip δ1 instructions if b evaluates to true
skip δ0 instructions if b evaluates to false.

code for b

pc′pc
σ

s
Before

pc′ + δ0
σ

s

After (if b is false)

pc′ + δ1
σ

s

After (if b is true)

23

Compiling Boolean expressions

A base case: b = (a1 = a2)

code a1 code a2 Ibeq(δ1, δ0)

pc
σ

s

pc′

n1 :: σ

s

pc′′

n2 :: n1 :: σ

s

pc′′ + 1 + δ1
σ

s

pc′′ + 1 + δ0
σ

s

24

Short-circuit evaluation of Boolean “and”

If b1 evaluates to false, b1 and b2 evaluates to false as well:
no need to evaluate b2!

Therefore, if b1 is false, the compiled code for b1 and b2 can skip
the code for b2 and jump directly to the expected target.

code for b1 code for b2

δ0 + |code(b2)|

δ0

0
δ1

25

Compiling commands

Contract: if command c, started in initial store s, terminates in
final store s′,

code for c

pc
σ

s
Avant:

pc′ = pc + |code|
σ

s′
Après:

(Coq function: compile_com)

26

The mysterious branch o�sets

Compiled code for IFTHENELSE b c1 c2:

code for b code for c1 Ibranch code for c2

skip |code(c1)|+ 1 instrs if b false

skip |code(c2)| instrsskip 0 instrs if b true

27

The mysterious branch o�sets

Compiled code for WHILE b c:

code for b code for c Ibranch

skip |code(c)|+ 1 instrs if b false

skip 0 instrs if b true

go back |code(b)|+ |code(c)|+ 1 instrs

28

First compiler correctness results

First verifications

The “contract” for arithmetic expressions: if a evaluates to n in
store s,

code for a

pc
σ

s
Before:

pc′ = pc + |code|
n :: σ

s
After:

A plausible formal claim for this “contract”:

Lemma compile_aexp_correct:

forall s a pc σ,

transitions (compile_aexp a)

(0, σ, s)

(codelen (compile_aexp a), aeval a s :: σ, s).

29

Verifying the compilation of expressions

This claim cannot be proved by induction on the structure of a. It
must be generalized so that

• the initial pc is not necessarily 0;
• the code compile_aexp a occurs within a larger piece of

code C, at position pc.

To this end, we define the predicate code_at C pc C’ that holds
in the following case:

C’C =

pc

30

Verifying the compilation of expressions

Lemma compile_aexp_correct:

forall C s a pc σ,

code_at C pc (compile_aexp a) ->

transitions C

(pc, σ, s)

(pc + codelen (compile_aexp a), aeval a s :: σ, s).

Proof: an induction on the structure of a.
(It’s the proof by McCarthy and Painter, 1967!)

Base cases are trivial:

• a = n: execution of one Iconst transition
• a = x: execution of one Ivar(x) transition.

31

An inductive case

Consider a = a1 + a2 and assume

code at C pc (code(a1) ++ code(a2) ++ Iadd :: nil)

We build a transition sequence:

(pc, σ, s)

↓ ∗ ind. hyp. for a1

(pc + |code(a1)|, aeval a1 s :: σ, s)

↓ ∗ ind. hyp. for a2

(pc + |code(a1)|+ |code(a2)|, aeval a2 s :: aeval a1 s :: σ, s)

↓ Iadd transition

(pc + |code(a1)|+ |code(a2)|+ 1, (aeval a1 s + aeval a2 s) :: σ, s)
32

Verifying the compilation of expressions

Same approach for Boolean expressions: the “contract”, once
formalized and generalized, is as follows:

Lemma compile_bexp_correct:

forall C s b d1 d0 pc σ,

code_at C pc (compile_bexp b d1 d0) ->

transitions C

(pc, σ, s)

(pc + codelen (compile_bexp b d1 d0)

+ (if beval b s then d1 else d0), σ, s).

The proof is by induction on the structure of b.

33

Verifying the compilation of commands

Lemma compile_com_correct_terminating:

forall s c s’,

cexec s c s’ ->

forall C pc σ,

code_at C pc (compile_com c) ->

transitions C

(pc, σ, s)

(pc + codelen (compile_com c), σ, s’).

An induction on the structure of c fails in the WHILE case.

An induction on the derivation of the predicate cexec s c s’

works beautifully.

34

Summary so far

Combining the previous results, and taking

compile_program c = compile_command c ++ Ihalt :: nil

we obtain a nice theorem:

Theorem compile_program_correct_terminating:

forall s c s’,

cexec s c s’ ->

machine_terminates (compile_program c) s s’.

Is this enough to conclude that our compiler is correct?

35

What could have we missed?

Theorem compile_program_correct_terminating:

forall s c s’,

cexec s c s’ ->

machine_terminates (compile_program c) s s’.

What if the generated machine code stops on a store di�erent
from s’? or loops forever? or gets stuck on an error?

Impossible! because the machine is deterministic: every machine
code program has at most one behavior (termination on a given
store, divergence, or going wrong).

36

What could have we missed?

Theorem compile_program_correct_terminating:

forall s c s’,

cexec s c s’ ->

machine_terminates (compile_program c) s s’.

What if the source program c, started in store s, diverges instead
of terminating? What does the compiled machine code do in this
case?

Example

Let’s “optimize” while true do c into skip.
This feels wrong; yet, the theorem is still valid!

We need a more precise verification to show preservation of
non-termination.

37

Simulation diagrams

Transition semantics

Defined by a relation a→ a′ representing one transition / one
reduction step.

Also called “small-step operational semantics”.

Examples:

• the reduction semantics for IMP
• the transition semantics for the virtual machine
• the lambda-calculus M→β M′

• process calculi P α→ P′

38

Transition semantics

Transition semantics define the possible behaviors of a programs
in terms of transition sequences:

• Termination: finite sequence of transitions to a final
configuration.

a→ a1 → · · · → an ∈ Fin

• Divergence: infinite sequence of transitions.

a→ a1 → · · · → an → · · ·

• Going wrong: finite sequence of transitions to a
configuration that is stuck and is not final.

a→ a1 → · · · → an 6→ with an /∈ Fin

39

Simulation diagrams

Assume that the source program S and the compiled code C have
transition semantics.

Show that every transition in the execution of S

• is “simulated” by transitions in the execution of C

• while preserving a relation between S configurations and
C configurations.

40

Lock-step simulation diagrams

Every transition in the source program is simulated by exactly
one transition of the compiled code.

s1 c1

s2 c2

≈

≈

(In black: hypotheses; in red: conclusions.)

41

Lock-step simulation diagrams

Also show that initial configurations are related:

sinit ≈ cinit

Also show that final configurations are related:

s ≈ c ∧ s ∈ Fin =⇒ c ∈ Fin

42

Lock-step simulation diagrams

It follows that if S terminates, C terminates as well:

sinit cinit

s1 c1

sn cnFin 3 ∈ Fin

≈

≈

≈

≈

Likewise, if we have infinitely many transitions from sinit, we have
infinitely many transitions from cinit. Hence, if S diverges,
C diverges as well.

43

“Plus” simulation diagrams

In some cases, every transition in the source program is
simulated by one or several transitions in the compiled code.

(Example: the compiled code for x := a comprises several
machine instructions.)

s1 c1

s2 c2

≈

≈
+

Again, termination and divergence are preserved.

44

“Star” simulation diagram (wrong!)

In some cases, every transition in the source program is
simulated by zero, one or several transitions in the compiled
code.

Example: the reduction (SKIP; c)/s→ c/s corresponds with zero
machine. This is called “stuttering”.

s1 c1

s2 c2

≈

≈
∗

Terminating executions are preserved.
Diverging executions are not always preserved!

45

The infinite stuttering problem

s1 c

s2

sn

sn+1

≈
≈
≈
≈

Here, the source program diverges, but the compiled code can
terminate, normally or on an error.

This denotes an incorrect optimization of diverging programs,
such as “optimizing” while true do skip into skip.

46

“Star” simulation diagrams (corrected)

Find a measure M(s) : nat for source configurations that
decreases strictly on stuttering steps.

s1 c1

s2 c2

≈

≈
+

s1 c1

s2

≈

≈or

and M(s2) < M(s1)

If s terminates, c terminates too (like before).

If s diverges, it must perform infinitely many non-stuttering
transitions, hence c performs infinitely many transitions.

(Remark: we can use any well-founded ordering on source configurations.)

47

Towards a simulation diagram for IMP compilation

Let’s try to prove a simulation diagram between an IMP command
and its compiled machine code.

Two di�culties with IMP’s reduction semantics:

• how to connect the IMP command and the machine code?
• how to build a measure to avoid infinite stuttering?

48

“Spontaneous generation” of commands

In natural semantics, all commands that appear in the derivation
of c/s ⇓ s′ are sub-terms of c.

Not so in reduction semantics! Commands appear during
reduction that are not sub-terms of the initial program c:

(while b do c)/s→ (c; while b do c)/s if [[s]] b = true

((if b then c1 else c2); c)/s→ (c1; c)/s if [[b]] s = true

49

Matching commands with compiled code

The compiled code for the initial program does not change
during execution. It may not contain the code for commands
“spontaneously generated” during reductions.

Compiled code for (if b then c1 else c2); c:

code for b code for c1 Ibranch code for c2 code for c

This code does not contain the compiled code for c1; c, which is:

code for c1 code for c

50

The anti-stuttering measure

The “stuttering” reduction steps, those that correspond to zero
transitions of the machine, include:

(skip; c)/s→ c/s

(if true then c1 else c2)/s→ c1/s

(while true do c)/s→ (c; while true do c)/s

Therefore, we must find a measure M such that

M(skip; c) > M(c)

M(while true do c) > M(c; while true do c)

This is impossible! Consider M(while true do skip). . .

51

Tagging sequences

We can work around the issue by marking ;† the sequences
generated by loop reductions:

(while b do c)/s→ skip/s if [[b]] s = false

(while b do c)/s→ (c;† while b do c)/s if [[s]] b = true

(c1;
† c2)/s→ (c′1;

† c2)/s′ if c1/s→ c′1/s′

(skip;† c2)/s→ c2/s

The reduction (skip;† c2)/s→ c2/s is not stuttering, since it
corresponds to the Ibranch instruction that restarts the loop.
Therefore, we can take M(c1;

† c2) = M(c1) and satisfy the
constraints over M.

52

Time for a di�erent approach

Red alert: we are about to change the syntax of the IMP language
just to “push through” a compiler proof. . .

Saner approach: without changing the syntax of IMP, let’s find
another semantics:

• of the small-step operational style, to support reasoning by
simulation diagrams;

• that does not run into problems with “spontaneous
generation” of commands, nor with stuttering control.

53

A semantics using continuations

A small-step semantics with continuations

Instead of reducing whole programs c

c/s→ c′/s′

let us reduce commands under focus c and their continuations k:

c/k/s→ c′/k′/s′

(Idea taken from A. W. Appel and S. Blazy, Separation Logic for
Small-Step Cminor, 2007.)

(Close to “focusing” in proof theory.)

54

The usual reduction semantics

Rewrites the whole program even though only one sub-command
changes (the redex).

Context C

c = C[redex]

redex

Context C

c′ = C[reduct]

reduct

reduction

head reduction

55

Focusing the reduction semantics

Rewrite pairs (sub-command, context where it appears).
x := a , → SKIP ,

The sub-command is not always the redex! We add explicit
focusing and resumption rules to move terms between
sub-command and context.

(c1; c2) , → c1 ,

; c2

SKIP , → c2 ,

; c2

Focusing on the left of a sequence Resuming a sequence
56

Representing contexts “upside-down”

Inductive ctx := Inductive cont :=

| CThole: ctx | Kstop: cont

| CTseq: com -> ctx -> ctx. | Kseq: com -> cont -> cont.

CTseq

CTseq

CTseq

CThole

z
y

x

Kseq

Kseq

Kseq

z
y

x

Kstop

CTseq (CTseq (CTseq CThole x) y) z
Kseq x (Kseq y (Kseq z Kstop))

Upside-down context ≈ continuation.
(“Eventually, do x, then do y, then do z, then it’s over.”)

57

Transition rules

x := a/k/s → skip/k/s[x← aeval a s]

(c1; c2)/k/s → c1/Kseq c2 k/s

if b then c1 else c2/k/s → c1/k/s if beval b s = true

if b then c1 else c2/k/s → c2/k/s if beval b s = false

while b do c end/k/s → c/Kwhile b c k/s
if beval b s = true

while b do c end/k/s → skip/c/k if beval b s = false

skip/Kseq c k/s → c/k/s

skip/Kwhile b c k/s → while b do c done/k/s

Note: no spontaneous generation of commands!
58

Full correctness of the compiler

A simulation diagram

At last we can construct a simulation diagram of the transitions
of the IMP continuation semantics by transitions of the machine.

This will prove semantic preservation for terminating executions
(already proved) and diverging executions (new!).

Since the machine is deterministic, it follows a bisimulation
between the source program and its compiled code.

Two delicate points:

1. Rule out infinite stuttering.
2. Match the current command-continuation c, k with the

compiled code C (which is fixed during execution).

59

The anti-stuttering measure

The main stuttering reduction steps are:

(c1; c2)/k/s→ c1/Kseq c2 k/s

skip/Kseq c k/s→ c/k/s

(if true then c1 else c2)/k/s→ c1/k/s

(while true do c)/k/s→ c/Kwhile true c k/s

Like before, measuring c leads us nowhere. We must measure
(c, k) pairs.

60

The anti-stuttering measure

After trial and error, the following measure works:

M(c, k) = ‖c‖+ M(k)

where

M(Kskip) = 0 M(Kseq c k) = ‖c‖+M(k) M(Kwhile b c k) = M(k)

It satisfies

M((c1; c2), k) = M(c1, Kseq c2 k) + 1
M(SKIP, Kseq c k) = M(c, k) + 1

M(IFTHENELSE b c1 c2, k) > M(c1, k)

M(WHILE b c, k) = M(c, Kwhile b c k) + 1

61

Matching commands, continuations, and compiled code

For a command c: code_at C pc (compile_com c).

compile com cC =

pc

For a (command c, continuation k) pair:

compile com c IhaltC =

pc pc’

instructions that “execute” k

62

Matching continuations and compiled code

A predicate compile cont C k pc, read “there exists a path in
code C starting at pc, ending on a Ihalt instruction, and
executing the pending computations described by k”.

Base case k = Kstop:

Ihalt

pc
Sequence case k = Kseq c k′:

compile com c

pc pc’ s.t. compile cont C k’ pc’

63

Matching continuations and compiled code

A “non-structural” case lets us insert branches when convenient:

Ibranch

pc
pc’ s.t. compile cont C k pc’

Makes it possible to handle continuation produced by
if b then c1 else c2:

code for b code for c1 Ibranch code for c2

pc s.t. compile cont C k pc

64

The simulation relation

A source program configuration (c, k, s) matches a machine
configuration C, (pc, σ, s′) i�:

• the stores are the same: s′ = s

• the stack is empty: σ = ε

• C contains compiled code for c starting at position pc

• C contains compiled code for k starting at position
pc + |code(c)|.

65

The simulation diagram

c1/k1/s1 (pc1, ε, s′1)

c2/k2/s2 (pc2, ε, s′2)

C ` c1/k1/s1 ≈ (pc1, ε, s1)

C ` c2/k2/s2 ≈ (pc2, ε, s2)

+

∨
∗ ∧ M(c2, k2) < M(c1, k1)

Proof: large case analysis on the left-hand transition.

66

To conclude

From this diagram, it follows:

• Another proof of compiler correctness for terminating
programs:
if c/Kstop/s ∗→ SKIP/Kstop/s′

then machine terminates (compile program c) s s′

• A proof of compiler correctness for diverging programs:
if c/Kstop/s reduces infinitely,
then machine diverges (compile program c) s

Mission accomplished!

67

Summary

Summary

Using a non-optimizing compiler for the toy IMP language, we
have shown several approaches that scale to more ambitious
compiler verification projects such as CompCert:

• Code generation by recursion over the abstract syntax tree.
• Natural semantics for initial explorations.
• Simulation diagrams between two transition semantics for

the final proof.
• Continuation semantics for languages with structured

control.

68

References

References

An excellent compiler textbook:

• A. W. Appel, Modern Compiler Implementation in Java / ML / C,
Cambridge University Press, 1998.

Another verification of an IMP compiler:

• T. Nipkow, G. Klein, Concrete Semantics, Springer, 2014, chapitre 8.

Two formal verification of realistic compilers:

• X. Leroy, Formal verification of a realistic compiler, Comm. ACM
52(7), 2009.

• R. Kumar, M. O. Myreen, M. Norrish, S. Owens, CakeML: A Verified
Implementation of ML, POPL 2014.

69

	The IMP virtual machine
	The compiler
	First compiler correctness results
	Simulation diagrams
	A semantics using continuations
	Full correctness of the compiler
	Summary
	References

