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Inductive types, inductive predicates

The lecture of Nov 28th 2018 presented inductive types and inductive
predicates, a powerful mechanism to

@ define data types and logical predicates
@ that are finitely generated by constructors
@ and used by structural induction and case analysis.

Example: the natural numbers in Coq.

Inductive nat : Type := 0: nat | S: nat -> nat.

Fixpoint add (n m: nat) {struct n} : nat :=
match n with 0 =>m | S n’ => S (add n’ m) end.

Inductive even : nat -> Prop :=
| even_0: even O
| even_S: forall n, even n -> even (S (S n)).



Infinite data

How can we declare and work with infinite data structures?

For instance:

@ Streams, that is, infinite lists.
A stream = a pair of a value and of a stream.
@ Infinite binary trees.
An infinite binary tree = a triple (left subtree, value, right subtree).

Note: “infinite” here means “potentially infinite”: a terminating program
will only traverse a finite part of the structure.



Computer representation of infinite data

1- By directed graphs with cycles.

Example: a finite deterministic automaton over the alphabet {0, 1}

encodes an infinite binary tree (with, at each node, a Boolean “accepting /
not accepting”).

A finite graph can only represent regular infinite structures, that is, those
having finitely many different sub-structures.

Regular infinite: the stream 0.1.2.0.1.2.0.1.2. ...

Non-regular infinite: the stream of integers 0.1.2.3.4.5.6.7.8.9.. ..



Computer representation of infinite data

2- By delayed / on-demand evaluation of sub-structures.

Evaluation explicitly delayed by a function:
type ’a stream = unit -> ’a cell
and ’a cell = Cons of ’a * ’a stream
let tail s = match s() with Cons(h,t) > t

On-demand evaluation via an explicit 1azy type, as in OCaml:

type ’a stream = ’a cell Lazy.t
and ’a cell = Cons of ’a * ’a stream
let tail s = match Lazy.force s with Cons(h,t) -> t

On-demand evaluation by default, as in Haskell:

data Stream a = Cons a (Stream a) (x implicitly "lazy" *)



This lecture

How to model infinite data structures and reason upon them?
@ Classic set-theoretic approach: greatest fixed points.
@ Proof theoretic approach: infinite trees and infinite derivations.
@ Coalgebraic approach: “codata” defined by their observations.

Two applications:
@ The partiality monad, to do general recursion in type theory.

@ Reactive programming, viewed as programming over infinite streams,
or maybe not...



Greatest fixed points



Least fixed point, greatest fixed point

Let Abe asetand F: P(A) — P(A) a monotonically increasing function:
if X C Y then F(X) C F(Y).

If F(X) C X we say that X is stable by F.
If X C F(X) we say that X is consistent for F.

Theorem (Knaster, Tarski, Kleene)
The set {x | x = F(x)} of fixed points of F is a complete lattice.
In particular,

Fe ﬂ{X | X stable by F} s the least fixed point of F

and it is the limit of the increasing sequence 0, F(0), F(F(()), . ..

d . ) '
vF = U{X | X consistent for F} is the greatest fixed point of F

and it is the limit of the decreasing sequence A, F(A), F(F(A)), . ..
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Induction and co-induction

Induction principle: if X is stable by F, then uF C X.

In other words: to show Va € uF, a € X,
it suffices to show Va € F(X), a € X.

Coinduction principle: if X is consistent for F, then X C vF.

In other words: to show Va € X, a € v'F,
it suffices to show Va € X, a € F(X).

Alternative: to show a € vF, it suffices to find a set X
such thata € Xand Vb € X, b € F(X).



Inductive types, coinductive types

Consider an algebraic type declaration, such as
type nat = 0 | S of nat

The F(X) operator is defined as “the values we can construct by applying a
constructor once, taking arguments of the algebraic type from X".
In our example:

F(X) = {0} U{s(x) [ x € X}
This operator is increasing if all occurrences of the algebraic type in the
types of constructors are strictly positive.

The inductive type defined by this declaration is uF, the least fixed point of
operator F.

The coinductive type defined by this declaration is vF, the greatest fixed
point of operator F.



The inductive interpretation

Inductive nat: Type := 0: nat | S: nat -> nat
FX) = {0} U{S(x) [ x € X}

nat is the least fixed point of F.

It is also the limit of the sequence ), F(0) = {0}, F(F(0)) = {0,8(0)}, ...

More generally, nat is the set of terms X < {s"(0) | n € N}.
@ For every n, 8"(0) € F"'(0) C uF.
@ Conversely, the set X is stable by F, since
F(X) = {0} U {s(8"(0)) | n € N} = X, hence, by the induction
principle, uF C X.



The coinductive interpretation

CoInductive conat: Type := 0: conat | S: conat -> conat
F(X) = {0} U{s(x) [ x € X}

conat is the greatest fixed point of F.

It is also the limit of the sequence U, F(U) = {0} U {S(x) | x € U}, ...,
F'(U) = {0,s(0),...,S" (0)} U {s"(x) | x € U}, ...

Every S"(0) is in conat, since uF C vF.
However, conat also contained the infinite term w defined by w = S w.

That's because {w} C F({w}) = {0,w}, hence, by the coinduction
principle, {w} C vF.



Inductive predicates, coinductive predicates

The same approach extends to inductive families, and in particular to
predicates defined by axioms and inference rules.

Example: the predicate “being even” over natural numbers.

even(n)

even(S(S(n)))

even(0)

This set of rules corresponds to an operator F(X) that computes the facts
we can deduce from the facts X by applying one rule:

F(X) = {even(0)} U {even(S(S(n))) | even(n) € X}



The inductive interpretation

Inductive even: conat -> Prop :=
| even_0: even 0
| even_S: forall n, even n -> even (S(S n)).

F(X) = {even(0)} U {even(S(S(n))) | even(n) € X}
even is defined as uF, the least fixed point F.

Induction principle: to show Vn, even(n) = P(n),
it suffices to show P(0) and Vn, P(n) = P(S(S(n))).

We can characterize even: (with f : nat — conat canonical injection)
@ Vn : nat,even(f(n + n)) by induction over n : nat
@ Vm,even(m) = 3n, m = f(n+ n) by induction over even(m)

@ Vm,even(m) = m # w by induction over even(m)



The coinductive interpretation

CoInductive coeven: conat -> Prop :=
| coeven_0: coeven O
| coeven_S: forall n, coeven n -> coeven (S(S n)).

F(X) = {coeven(0)} U {coeven(S(S(n))) | coeven(n) € X}
coeven is defined as vF, the greatest fixed point of F.

Coinduction principle: to show Vn, P(n) = coeven(n),
it suffices to show Vn, P(n) = n =0V 3dm,n = 3(S(m)) A P(m).

We can therefore show:
@ Vn,even(n) = coeven(n) by coinduction, taking P(n) = even(n).
@ coeven(w) by coinduction, taking P(n) = (n = w).



Infinite trees, infinite derivations



An interpretation in terms of trees

Avalue of a (co-)inductive type can be viewed as a tree, with
at leaves: constant constructors,
at nodes: constructors of arity n, where n = number of sub-trees.

(We treat C of nat -> t as a constructor with infinite arity.)

S
Values of a co-inductive type are finite or infinite 1l
0

trees.

Values of an inductive type are trees where all
branches are finite.

Values of an inductive type whose constructors
have finite arities are finite trees.

W< < < W



An interpretation in terms of derivations

Likewise, a proof term for a (co-)inductive predicate can be viewed as a
derivation tree, with at leaves: instances of axioms,

at nodes: instances of inference rules with n premises, n = number of
sub-trees.

A coinductive predicate holds iff it is the
conclusion of a finite or infinite derivation.

An inductive predicate holds iff it is the
conclusion of a derivation where all

. coeven(w)
branches are finite. -
An inductive predicate where all rules have even(0) coeven(w)
a finite number of premises holds iff it is even(S(S(0)))  coeven(w)

the conclusion of a finite derivation.



Structural recursion, productive corecursion

A recursive function f : ind — t over an inductive type ind must be
structural: recursive calls f(y) are done over strict sub-terms y of the
argument.

Fixpoint f(n: nat) : t :=
match n with

| 0= ...

|l Sp=> ... fp ... fTnX ... end

Consequently: the computation f(n) always terminates.

20



Structural recursion, productive corecursion

A recursive function f : ind — t over an inductive type ind must be
structural: recursive calls f(y) are done over strict sub-terms y of the
argument.

A corecursive function f : t — coind returning a coinductive type must be
productive: recursive calls f(y) must be strict sub-terms of the result.

CoFixpoint f(x: t) : conat :=
match x with

| ... =>0

| ... => S((..))
| ... = £(...) X

| L= g(£(..)) X

Consequently: the computation of the head constructor of f(x) always
terminates.
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Examples of corecursive definitions

The number “positive infinity”:

CoFixpoint omega : conat := S omega.

The sum of two natural numbers, possibly infinite:

CoFixpoint add (p q: conat) : conat :=
match p with
| 0 =>q (* no recursive call *)
| Sp>=>8 (add p’ q) (* recursive call guarded by S *)

Subtraction cannot be defined: sub omega omega would diverge while
determining the head constructor.

CoFixpoint sub (p q: conat) : conat :=
match p, q with
| 0, _=>0 (* no recursive call *)
| ., 0=>p (* no recursive call *)
| Sp’, Sq’ => sub p’ q’ X (* unguarded recursive call *)
end.
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Examples of coinductive proofs

In the spirit of Curry-Howard, proofs by coinduction are corecursive
definitions of proof terms.

For instance, let's define the coinductive predicate infinite as

CoInductive infinite: conat -> Prop :=
| infinite_S: forall n, infinite n -> infinite (S n).

Then, the proof of infinite omega is, morally,

CoFixpoint omega_infinite: infinite omega :=
infinite_S omega omega_infinite.

This is not quite right because omega is not convertible with S omega

(see next slide), hence we must explicitly apply the (provable) equality
omega_eq: omega = S omega.

CoFixpoint omega_infinite: infinite omega :=

eq_ind_r _ (infinite_S omega omega_infinite) omega_eq.
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Reduction rules

Just like recursive definitions (Fixpoint), corecursive definitions

(CoFixpoint) cannot be arbitrarily “unrolled”, since this would cause
nontermination:

omega — S(omega) — S(S(omega)) — - - X

The reduction rule used by Coq: a corecursive definition vx. a expands to
a{x < vx.a} only when it is argument of a match:

matchvx.awith ... — matcha{x + vx.a} with ...

Compare with the rule for recursive definitions uf. Ax. a, which expand only
when applied to a constructor:

(uf - M.a) (Cb) — a{f «+ pf-Mx.a, x < Cb}
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Unrolling equalities

Even if it does not hold by conversion, we can show the equality
omega = S omega by proof.

First we show an extensionality property for values of type conat:

Lemma unroll: forall (n: conat),
n =match n with 0 => 0| Sm => S m end.

Then, unroll omega has the following type, which reduces:

=> S m end

omega = match omega with 0 => 0 m
Sm=>8 m end

= I
— omega = match S omega with 0 => 0
— omega = S omega

S
|

2%



Typing is not preserved by reductions

(E. Giménez, Un Calcul de Constructions Infinies et son application a la vérification de
systémes communicants, PhD thesis, ENS Lyon, 1996)

We have the following reductions and typings:

unroll omega : omega = S omega

* | 1 (not convertible)

eq.refl omega : omega = omega

This invalidates preservation of typing by reduction (subject reduction):
ifM:tand M — M then M’ : t.

This doesn’t mean that Coq + coinductive types is inconsistent; only that a
consistency proof is more difficult. (See Giménez's PhD.)
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Coinductive types, general recursion,
and the partiality monad



Partial computations
(V. Capretta, General recursion via coinductive types, LMCS(1), 2005)

CoInductive delay (A: Type) : Type :=
| now: A -> delay A
| later: delay A -> delay A.

delay A represents computations that return a value of type A if they
terminate.

The later constructor materializes one step of computation.

The type delay being coinductive, we can have infinitely many
computation steps, and therefore a computation that does not terminate.
Example:

CoFixpoint bottom (A: Type) : delay A := later (bottom A).

27



Partial computations

CoInductive delay (A: Type) : Type :=
| now: A -> delay A
| later: delay A -> delay A.

We characterize inductively the terminating computations, coinductively
the diverging computations:

Inductive terminates (A: Type) : delay A -> A -> Prop :=
| terminates_now:
forall v, terminates (now v) v
| terminates_later:
forall a v, terminates a v —-> terminates (later a) v.

CoInductive diverges (A: Type) : delay A -> Prop :=
| diverges_later:

forall a, diverges a -> diverges (later a).
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General recursion

We can define arbitrary general recursive functions with a delay result
type, provided all recursive calls are guarded by a 1ater constructor.

CoFixpoint syracuse (n: nat): delay unit :=
if Nat.eqb n 1 then now tt
else if Nat.even n then later (syracuse (Nat.div n 2))
else later (syracuse (3 * n + 1)).

We can, then, reason over termination or divergence of the function.

Conjecture Collatz_1:

forall n, n >= 1 -> terminates (syracuse n) tt.
Conjecture Collatz_2:

exists n, n >= 1 A diverges (syracuse n).

29



A fixed-point combinator

Consider F : (A — delay B) — (A — delay B). We can construct a

function Y F : A — delay B by iterating F from Ax. bottom and taking
“the first defined result”™:

(AX.bottom) a

F(Ax.bottom)a - - - - - - - v
F’(Ax.bottom)a - - - - v
FP(MA.bottom)a - - - - v

Under some hypotheses over F, the fixed-point equation holds, namely the

equivalence between Y Faand F (Y F) a.
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The partiality monad

The delay type is @ monad, with the now constructor as ret operation, and
the bind operation defined as sequencing of two computations.

CoFixpoint bind (A B: Type)
(a: delay A) (f: A -> delay B) : delay B :=
match a with
| now v => later (f v)
| later a’ => later (bind a’ f)
end.

The expected properties of sequencing hold, for instance bind a f
diverges iff a diverges or a terminates with vand £ v diverges.
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Productivity issues

Owing to the syntactic productivity criterion, the bind we just defined is
often unusable inside a coinductive definition.

Example: McCarthy’s 91 function.

n—10 if n > 100
M(n) =

M(M(n +11)) ifn <100

CoFixpoint M (n: nat) : delay nat :=
if Nat.leb n 100

then bind (M (n + 11)) (fun x => M x)
else now (n - 10).

The corecursive callsM (n + 11) and M x are rejected because they occur
under the bind, which is not a constructor of type delay.
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Going through the free monad

(N. A. Danielsson, Beating the Productivity Checker Using Embedded Languages, 2010)

We can work around the issue by presenting the monad as a coinductive

type, whose constructors are the operations of the partiality monad:
ret, bind, and later.

CoInductive mon: Type -> Type :=
| ret: forall (A: Type), A -> mon A
| bind: forall (A B: Type), mon A -> (A -> mon B) -> mon B
| latr: forall (A: Type), mon A -> mon A.
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Going through the free monad

Now, function 91 is productive, indeed:

CoFixpoint M (n: nat) : mon nat :=
if Nat.leb n 100
then bind (M (n + 11)) (fun x => M x)
else ret (n - 10).
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Going through the free monad

The description of a computation, of type mon A4, is turned into a
computation, of type delay A, by the following function:

CoFixpoint interp (A: Type) (m: mon A) : delay A :=
match m with
| ret v => now v
| latr m => later (interp m)
| bind (ret v) f => later (interp (f v))
| bind (latr m) f => later (interp (bind m £))
| bind (bind a f) g =>
later (interp (bind a (fun v => bind (f v) g)))
end.

Note the use of the monadic laws bind-ret and bind-bind so as to
reduce every bind to later(interp a)
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IV

Codata and copatterns



Types defined by observations

Inductive types are finitely generated by their constructors. Likewise, we
can say that coinductive types are finitely determined by their projections,
that is, by the observations we can make over the values of those types.

Example: streams have two projections,
hd : streamA — A tl:stream A — streamA

A stream s is entirely determined by the results of the observations
hd(s), hd(t1(s)), ..., hd(t1"(s)), ...

Remark: a function f : A — B is also a “black box” determined by the
results of the applications (observations) f a1,....,f ap,. ..
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Data and codata

This suggests to classify types into

@ Data types: integers, Booleans, A x B, A + B, all inductive types.

@ Codata types: functions A — B, streams, all coinductive types.

Inductive types are presented as sums labeled by constructors.

Likewise, coinductive types are presented as products labeled by
projections (i.e. as records).

list A := ( nil | cons of A X list A )
stream A := { hd: A; tl: stream A }
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Defining codata

Codata is used by applying projections. But how is codata defined? By
equations that define how it reacts to projections!

Examples: the stream from n of integersn,n +1,n+2,.. ..

(from n).hd = n
(from n).tl = from (n + 1)

Mapping a function f over every element of a stream:

(map f s).hd
(map £ s).tl

f (s.hd)
map £ (s.tl)
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Definitions by equations and pattern-matching

This style of definition is also present in Haskell and Agda to define
recursive functions over inductive data, such as

double 0 = 0
)

double (S x) = S (S (double x))

Symmetry: in the case of data, we need one equation per possible
constructor of the argument; in the case of codata, we need one equation
per possible projection of the result.

(map f s).hd
(map f s).tl

f (s.hd) map f nil = nil
map f (s.tl) map f (cons h t) =
cons (f h) (map f t)
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Patterns and co patterns
(Abel, Pientka, Thibodeau, Setzer, Copatterns, POPL 2013)

Abel et al propose to unify these two styles of definitions by equations

with the help of patterns and copatterns.

Patterns (= possible shapes for data)

pi=x variable
| Cstrpy --- pp constructor
Copattern (= possible observations over codata)
g =0 the object being defined
lqp function application
| g .Proj projection

A piece of codata is, then, a list of (copattern, expression) cases.

For instance, Ax.a is [((J x, a)]
and {hd = a,tl = b} is [((J.hd, a); (.t1, b)].

A



Examples of nested copatterns

Fibonacci numbers, inductively:

fib O =SS0
fib (S 0) =SS0
fib (S (S x)) fib x + fib (S x)

Fibonacci numbers, as a stream:

fibs .hd =S50
fibs .tl1] .hd = S O
fibs .tl .tl = zipWith plus fibs (fibs.tl)

The streamn,n—1,...,1,0,N,N—1,...,0,N, ...

(cycle n) .hd =n
(cycle 0) .tl = cycle N
(cycle (8 n)) .tl = cycle n



Reduction rules

Each equation is interpreted as a reduction rule (from left to right):

cycle (S(S(S0))).tl.tl.hd — cycle (S(S0)).t1l.hd
— cycle (S 0).hd
— 380

The issue in Coq (non-preservation of typing) is avoided because there are
no equalities between a piece of codata and its expansion.

For instance, s and {hd = s.hd; t1 = s.t1} react identically to projections,
but have no reasons to be equal.
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Productivity and structural recursion

To guarantee normalization, simple syntactic conditions seem sufficient:
@ Productivity: every copattern must start with a projection

@ Structural recursion: if we make a recursive call over a variable x, it
must appear under a constructor in the copattern.

Fx=F (Sx) X (F x).t1 = F (S x) F (8 x) = G(F x)
There are complex copatterns where productivity is less obvious:
fibs .tl .tl = zipWith plus fibs (fibs.tl)

Agda uses sized types for finer control of productivity.

(Abel and Pientka, Wellfounded Recursion with Copatterns and Sized Types, JFP(26), 2016.)



vV

Reactive programming
and guarded recursion



Reactive programming

Broadly speaking: any program whose purpose is to react via computations
to events coming from the outside world.

Example: a spreadsheet in “automatic recalculate” mode.
In this lecture: any program that receives a sequence of input values

io, i1, 2, ... and computes incrementally and “at the same pace” a sequence
of output values 0g, 01,05, . ..
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Reactive programming = programming with streams?

It is convenient to use streams to represent the sequences of inputs, of
outputs, or of intermediate results.

However, a reactive program is not any function from streams to streams.
The function must be causal: the n-th output o, depends on the past
inputs ip, . .., ip only, not on the future inputs e, 11, €542, - . ..

Examples of causal functions (+/) and non-causal functions (X):

F s =map f s
F s =cons 0 s
X Fs=1tls
X F s =cons (hd s) (F (1 (1 s)))
F s = cons (hd s) (cons (hd s) (F (t1 (£1 s))))
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Lustre, a causal-by-construction language

A Lustre program defines a set of streams X3, X,, ... by a set of
mutually-recursive equations X; = E;.

The expression language E; is sufficiently restricted to guarantee causality.
It includes:

@ Pointwise computations: X + YiszipWith (+) X Y.

@ Temporal operators that reduce to cons over streams:
cst fby X = cons cst X
pre X = cons nil X
X ->Y = cons (hd X) Y
@ Sampling operators over sub-clocks (represented as Boolean streams).

X when C = cons (if hd C then Pre(hd X) else Abs)
((tl X) when (tl1l C))
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Enforcing causality by typing

For additional flexibility (higher-order functions), we can replace syntactic
causality conditions by type constraints.

Krishnaswami and Benton (2011-2013) extend types with a “later” modality,
written >A.

Intuitively, values of type A are values of type A that must not be used
immediately (causality would be violated), but can be used at the next
time step.

hd : streamA — A
tl: streamA — >(streamA)
cons : A — >(stream A) — streamA
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Examples of typings

(In the language of Clouston et al, The guarded lambda-calculus, LMCS(12), 2016)

With fix : (>A — A) — A, next : A — >A, and
®:>(A—B)—>>A—>B

map = M. fix(Am. As. cons (f (hd s)) (m ® (t15)))
: (A— B) — stream A — streamB
with m : >(stream A — stream B)

nats = £ix(\s. cons 0 (next (map S) ® s))
. streamnat

with s : >(stream nat)

Typing guarantees causality and productivity, while the definition
CoFixpoint nats := cons 0 (map S nats)
doesn’'t even pass Coq’s syntactic productivity check.
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Guarded recursive types
(Nakano, A modality for recursion, LICS 2000.)

We can form the recursive type pa. 7 provided « is guarded in 7 :
all occurrences of « are “under” a > modality.

Examples:

po A X >a streams (infinite lists)
po.unit + A X >a finite or infinite lists
pa.bool X >a x >« infinite binary trees

(= deterministic automata)
pounit +a X not guarded
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Guarded recursive types
(Clouston et al, The guarded lambda-calculus, LMCS(12), 2016)

In the “topos of trees” (lectures of Jan 9th 2019), these guarded recursive
types are interpreted by time-indexed families of non-recursive types
(hence not coinductive).

Example: the type of streams pa. A X >au.

attime 0: unit
attime1: A X unit
attime2: A x A X unit

attimen: A x---A x unit (lists of length n)

Example: pov. unit + A X >« at time n = lists of length < n.

52



From guarded recursive types to coinductive types

We recover the usual coinductive types, freely usable at any time, via

another modality: [J, “forever”.

Semantically, [JA is the “constant object” that is the limit of the
interpretations of A at time n when n — oc. For instance:

O(pua. A x >a) ~ lim (lists of A of length n)

n—o0

~ infinite lists of A
O(pe. unit + A X >a) ~ lim (lists of A of length < n)

n—o0

~ finite or infinite lists of A

Restriction: A must be closed in CIA.
(For example, this prohibits po ... > «)

53



From guarded recursive types to coinductive types

The O modality behaves globally like the “necessarily” modality in S4
intuitionistic logic.

MlN-a:0A X:Cka:A X:Cha:>A

- unboxa:A X : C+ box(a) : A X:Ch prev(a) : A
C stands for a type constant over time: C ::=nat | C — C | JA.

The box and unbox operators make it possible to define non-causal
functions over coinductive types, such as

hd. : O(streamA) — A = )\s. hd(unbox(s))
tle : O(stream A) — O(stream A) = As. box(prev(tl(unbox(s))))
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From guarded recursion to corecursion

There is no fixed point operator corresponding to corecursion.
Instead, we must write guarded recursions, then apply box, thus
guaranteeing productivity.

Example: the stream function “take every other element”. We first define
the function that produces a guarded recursive stream

F:O(streamA) — stream A
= fix(Mf. As. cons(hd(s))(g ® next(t1lc(tlc(s)))))

then, using box, the function that produces a coinductive stream:

G:O(streamA) — (stream A)
= \s. box(F(s))
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Vi

Concluding remarks



Happy like Sisyphus?

Using these techniques for coinductive definitions and proofs, we can
“look infinity square in the eye” and program and reason directly with
infinite objects.

All this also works in type theory and in systems such as Agda and Cogq.

However, productivity conditions are very strict, and coinductive reasoning
remains difficult.
= more flexible proof principles, such as parameterized coinduction

(PACO, C. K. Hur et al, 2013) and coinduction “all the way up” (D. Pous, 2016).

As shown by the example of reactive programming, “finitary” approaches
(step-indexing, finite approximations) are sometimes preferable to
coinductive approaches.
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VII

Further reading



Further reading

A tutorial on set-theoretic coinduction, with application to subtyping:

@ B. C. Pierce: Types and Programming Languages, chapter 21,
MIT Press, 2002.

Coinduction in Coq:

@ Y. Bertot and P. Castéran: Interactive Theorem Proving and Program
Development, chapter 14.

The codata approach:

@ A. Abel, B. Pientka, D. Thibodeau, A. Setzer:
Copatterns: programming infinite structures by observations. POPL 2013.
http://www.cse.chalmers.se/~abela/popl13.pdf

The guarded recursion approach:

@ R. Clouston, A. Bizjak, H. B. Grathwohl, L. Birkedal:
The Guarded Lambda-Calculus: Programming and Reasoning with Guarded
Recursion for Coinductive Types. LMCS 12(3) 2016,
https://arxiv.org/abs/1606.09455

59


http://www.cse.chalmers.se/~abela/popl13.pdf
https://arxiv.org/abs/1606.09455

	Greatest fixed points
	Infinite trees, infinite derivations
	Partiality monad
	Codata and copatterns
	Reactive programming
	Concluding remarks
	Further reading

