
Programming = proving?
The Curry-Howard correspondence today

Ninth lecture

Sisyphus happy:
in�nite data types, proofs by coinduction,

and reactive programming

Xavier Leroy

Collège de France

2019-01-16

Inductive types, inductive predicates

The lecture of Nov 28th 2018 presented inductive types and inductive
predicates, a powerful mechanism to

de�ne data types and logical predicates
that are �nitely generated by constructors
and used by structural induction and case analysis.

Example: the natural numbers in Coq.

Inductive nat : Type := O: nat | S: nat -> nat.

Fixpoint add (n m: nat) {struct n} : nat :=

match n with O => m | S n’ => S (add n’ m) end.

Inductive even : nat -> Prop :=

| even_O: even O

| even_S: forall n, even n -> even (S (S n)).

2

In�nite data

How can we declare and work with in�nite data structures?

For instance:
Streams, that is, in�nite lists.
A stream = a pair of a value and of a stream.
In�nite binary trees.
An in�nite binary tree = a triple (le� subtree, value, right subtree).

Note: “in�nite” here means “potentially in�nite”: a terminating program
will only traverse a �nite part of the structure.

3

Computer representation of in�nite data

1- By directed graphs with cycles.

Example: a �nite deterministic automaton over the alphabet {0, 1}
encodes an in�nite binary tree (with, at each node, a Boolean “accepting /
not accepting”).

A �nite graph can only represent regular in�nite structures, that is, those
having �nitely many di�erent sub-structures.

Regular in�nite: the stream 0.1.2.0.1.2.0.1.2. . . .

Non-regular in�nite: the stream of integers 0.1.2.3.4.5.6.7.8.9 . . .

4

Computer representation of in�nite data

2- By delayed / on-demand evaluation of sub-structures.

Evaluation explicitly delayed by a function:

type ’a stream = unit -> ’a cell

and ’a cell = Cons of ’a * ’a stream

let tail s = match s() with Cons(h,t) -> t

On-demand evaluation via an explicit lazy type, as in OCaml:

type ’a stream = ’a cell Lazy.t

and ’a cell = Cons of ’a * ’a stream

let tail s = match Lazy.force s with Cons(h,t) -> t

On-demand evaluation by default, as in Haskell:

data Stream a = Cons a (Stream a) (* implicitly "lazy" *)

5

This lecture

How to model in�nite data structures and reason upon them?
Classic set-theoretic approach: greatest �xed points.
Proof theoretic approach: in�nite trees and in�nite derivations.
Coalgebraic approach: “codata” de�ned by their observations.

Two applications:
The partiality monad, to do general recursion in type theory.
Reactive programming, viewed as programming over in�nite streams,
or maybe not. . .

6

I

Greatest �xed points

Least �xed point, greatest �xed point

Let A be a set and F : P(A)→ P(A) a monotonically increasing function:
if X ⊆ Y then F(X) ⊆ F(Y).

If F(X) ⊆ X we say that X is stable by F.
If X ⊆ F(X) we say that X is consistent for F.

Theorem (Knaster, Tarski, Kleene)
The set {x | x = F(x)} of �xed points of F is a complete lattice.
In particular,

µF def
=

⋂
{X | X stable by F} is the least �xed point of F

and it is the limit of the increasing sequence ∅, F(∅), F(F(∅)), . . .

νF def
=

⋃
{X | X consistent for F} is the greatest �xed point of F

and it is the limit of the decreasing sequence A, F(A), F(F(A)), . . .

8

Fixed points, graphically

X

F(X)

µF νF A

consistent stable consistent stable

9

Induction and co-induction

Induction principle: if X is stable by F, then µF ⊆ X.

In other words: to show ∀a ∈ µF, a ∈ X,
it su�ces to show ∀a ∈ F(X), a ∈ X.

Coinduction principle: if X is consistent for F, then X ⊆ νF.

In other words: to show ∀a ∈ X, a ∈ νF,
it su�ces to show ∀a ∈ X, a ∈ F(X).

Alternative: to show a ∈ νF, it su�ces to �nd a set X
such that a ∈ X and ∀b ∈ X, b ∈ F(X).

10

Inductive types, coinductive types

Consider an algebraic type declaration, such as

type nat = O | S of nat

The F(X) operator is de�ned as “the values we can construct by applying a
constructor once, taking arguments of the algebraic type from X”.
In our example:

F(X) = {O} ∪ {S(x) | x ∈ X}

This operator is increasing if all occurrences of the algebraic type in the
types of constructors are strictly positive.

The inductive type de�ned by this declaration is µF, the least �xed point of
operator F.

The coinductive type de�ned by this declaration is νF, the greatest �xed
point of operator F.

11

The inductive interpretation

Inductive nat: Type := O: nat | S: nat -> nat

F(X) = {O} ∪ {S(x) | x ∈ X}

nat is the least �xed point of F.

It is also the limit of the sequence ∅, F(∅) = {O}, F(F(∅)) = {O, S(O)}, . . .

More generally, nat is the set of terms X def
= {Sn(O) | n ∈ N}.

For every n, Sn(O) ∈ Fn+1(∅) ⊆ µF.
Conversely, the set X is stable by F, since
F(X) = {O} ∪ {S(Sn(O)) | n ∈ N} = X, hence, by the induction
principle, µF ⊆ X.

12

The coinductive interpretation

CoInductive conat: Type := O: conat | S: conat -> conat

F(X) = {O} ∪ {S(x) | x ∈ X}

conat is the greatest �xed point of F.

It is also the limit of the sequence U, F(U) = {O} ∪ {S(x) | x ∈ U}, . . . ,
Fn(U) = {O, S(O), . . . , Sn−1(O)} ∪ {Sn(x) | x ∈ U}, . . .

Every Sn(O) is in conat, since µF ⊆ νF.

However, conat also contained the in�nite term ω de�ned by ω = S ω.

That’s because {ω} ⊆ F({ω}) = {O, ω}, hence, by the coinduction
principle, {ω} ⊆ νF.

13

Inductive predicates, coinductive predicates

The same approach extends to inductive families, and in particular to
predicates de�ned by axioms and inference rules.

Example: the predicate “being even” over natural numbers.

even(O)
even(n)

even(S(S(n)))

This set of rules corresponds to an operator F(X) that computes the facts
we can deduce from the facts X by applying one rule:

F(X) = {even(O)} ∪ {even(S(S(n))) | even(n) ∈ X}

14

The inductive interpretation

Inductive even: conat -> Prop :=

| even_O: even O

| even_S: forall n, even n -> even (S(S n)).

F(X) = {even(O)} ∪ {even(S(S(n))) | even(n) ∈ X}

even is de�ned as µF, the least �xed point F.

Induction principle: to show ∀n, even(n)⇒ P(n),
it su�ces to show P(O) and ∀n, P(n)⇒ P(S(S(n))).

We can characterize even: (with f : nat→ conat canonical injection)
∀n : nat, even(f(n + n)) by induction over n : nat

∀m, even(m)⇒ ∃n, m = f(n + n) by induction over even(m)

∀m, even(m)⇒ m 6= ω by induction over even(m)

15

The coinductive interpretation

CoInductive coeven: conat -> Prop :=

| coeven_O: coeven O

| coeven_S: forall n, coeven n -> coeven (S(S n)).

F(X) = {coeven(O)} ∪ {coeven(S(S(n))) | coeven(n) ∈ X}

coeven is de�ned as νF, the greatest �xed point of F.

Coinduction principle: to show ∀n, P(n)⇒ coeven(n),
it su�ces to show ∀n, P(n)⇒ n = O ∨ ∃m, n = S(S(m)) ∧ P(m).

We can therefore show:
∀n, even(n)⇒ coeven(n) by coinduction, taking P(n) = even(n).
coeven(ω) by coinduction, taking P(n) = (n = ω).

16

II

In�nite trees, in�nite derivations

An interpretation in terms of trees

A value of a (co-)inductive type can be viewed as a tree, with
at leaves: constant constructors,
at nodes: constructors of arity n, where n = number of sub-trees.

(We treat C of nat -> t as a constructor with in�nite arity.)

Values of a co-inductive type are �nite or in�nite
trees.

Values of an inductive type are trees where all
branches are �nite.

Values of an inductive type whose constructors
have �nite arities are �nite trees.

S S

↓ ↓
O S

↓
S

↓
S
...

18

An interpretation in terms of derivations

Likewise, a proof term for a (co-)inductive predicate can be viewed as a
derivation tree, with at leaves: instances of axioms,
at nodes: instances of inference rules with n premises, n = number of
sub-trees.

A coinductive predicate holds i� it is the
conclusion of a �nite or in�nite derivation.

An inductive predicate holds i� it is the
conclusion of a derivation where all
branches are �nite.

An inductive predicate where all rules have
a �nite number of premises holds i� it is
the conclusion of a �nite derivation.

even(O)

even(S(S(O)))

...

coeven(ω)

coeven(ω)

coeven(ω)

19

Structural recursion, productive corecursion

A recursive function f : ind→ t over an inductive type ind must be
structural: recursive calls f(y) are done over strict sub-terms y of the
argument.

Fixpoint f(n: nat) : t :=

match n with

| O => ...

| S p => ... f p 4 ... f n 8 ... end

Consequently: the computation f(n) always terminates.

20

Structural recursion, productive corecursion

A recursive function f : ind→ t over an inductive type ind must be
structural: recursive calls f(y) are done over strict sub-terms y of the
argument.

A corecursive function f : t→ coind returning a coinductive type must be
productive: recursive calls f(y) must be strict sub-terms of the result.

CoFixpoint f(x: t) : conat :=

match x with

| ... => O 4
| ... => S(f(...)) 4
| ... => f(...) 8
| ... => g(f(...)) 8

Consequently: the computation of the head constructor of f(x) always
terminates.

20

Examples of corecursive de�nitions

The number “positive in�nity”:

CoFixpoint omega : conat := S omega. 4

The sum of two natural numbers, possibly in�nite:

CoFixpoint add (p q: conat) : conat :=

match p with

| O => q 4 (* no recursive call *)

| S p’ => S (add p’ q) 4 (* recursive call guarded by S *)

Subtraction cannot be de�ned: sub omega omega would diverge while
determining the head constructor.

CoFixpoint sub (p q: conat) : conat :=

match p, q with

| O, _ => O 4 (* no recursive call *)

| _, O => p 4 (* no recursive call *)

| S p’, S q’ => sub p’ q’ 8 (* unguarded recursive call *)

end.

21

Examples of coinductive proofs

In the spirit of Curry-Howard, proofs by coinduction are corecursive
de�nitions of proof terms.

For instance, let’s de�ne the coinductive predicate infinite as

CoInductive infinite: conat -> Prop :=

| infinite_S: forall n, infinite n -> infinite (S n).

Then, the proof of infinite omega is, morally,

CoFixpoint omega_infinite: infinite omega :=

infinite_S omega omega_infinite.

This is not quite right because omega is not convertible with S omega

(see next slide), hence we must explicitly apply the (provable) equality
omega_eq: omega = S omega.

CoFixpoint omega_infinite: infinite omega :=

eq_ind_r _ (infinite_S omega omega_infinite) omega_eq.

22

Reduction rules

Just like recursive de�nitions (Fixpoint), corecursive de�nitions
(CoFixpoint) cannot be arbitrarily “unrolled”, since this would cause
nontermination:

omega→ S(omega)→ S(S(omega))→ · · · 8

The reduction rule used by Coq: a corecursive de�nition νx. a expands to
a{x← νx.a} only when it is argument of a match:

match νx. a with . . . → match a{x← νx.a} with . . .

Compare with the rule for recursive de�nitions µf . λx. a, which expand only
when applied to a constructor:

(µf . λx. a) (C b) → a{f ← µf . λx. a, x← C b}

23

Unrolling equalities

Even if it does not hold by conversion, we can show the equality
omega = S omega by proof.

First we show an extensionality property for values of type conat:

Lemma unroll: forall (n: conat),

n = match n with O => O | S m => S m end.

Then, unroll omega has the following type, which reduces:

omega = match omega with O => O | S m => S m end

→ omega = match S omega with O => O | S m => S m end

→ omega = S omega

24

Typing is not preserved by reductions
(E. Giménez, Un Calcul de Constructions In�nies et son application à la véri�cation de
systèmes communicants, PhD thesis, ENS Lyon, 1996)

We have the following reductions and typings:

unroll omega : omega = S omega

∗ ↓ 6 l (not convertible)
eq refl omega : omega = omega

This invalidates preservation of typing by reduction (subject reduction):
if M : t and M→ M′ then M′ : t.

This doesn’t mean that Coq + coinductive types is inconsistent; only that a
consistency proof is more di�cult. (See Giménez’s PhD.)

25

III

Coinductive types, general recursion,
and the partiality monad

Partial computations
(V. Capretta, General recursion via coinductive types, LMCS(1), 2005)

CoInductive delay (A: Type) : Type :=

| now: A -> delay A

| later: delay A -> delay A.

delay A represents computations that return a value of type A if they
terminate.

The later constructor materializes one step of computation.

The type delay being coinductive, we can have in�nitely many
computation steps, and therefore a computation that does not terminate.
Example:

CoFixpoint bottom (A: Type) : delay A := later (bottom A).

27

Partial computations

CoInductive delay (A: Type) : Type :=

| now: A -> delay A

| later: delay A -> delay A.

We characterize inductively the terminating computations, coinductively
the diverging computations:

Inductive terminates (A: Type) : delay A -> A -> Prop :=

| terminates_now:

forall v, terminates (now v) v

| terminates_later:

forall a v, terminates a v -> terminates (later a) v.

CoInductive diverges (A: Type) : delay A -> Prop :=

| diverges_later:

forall a, diverges a -> diverges (later a).

28

General recursion

We can de�ne arbitrary general recursive functions with a delay result
type, provided all recursive calls are guarded by a later constructor.

CoFixpoint syracuse (n: nat): delay unit :=

if Nat.eqb n 1 then now tt

else if Nat.even n then later (syracuse (Nat.div n 2))

else later (syracuse (3 * n + 1)).

We can, then, reason over termination or divergence of the function.

Conjecture Collatz_1:

forall n, n >= 1 -> terminates (syracuse n) tt.

Conjecture Collatz_2:

exists n, n >= 1 ∧ diverges (syracuse n).

29

A �xed-point combinator

Consider F : (A→ delay B)→ (A→ delay B). We can construct a
function Y F : A→ delay B by iterating F from λx. bottom and taking
“the �rst de�ned result”:

(λx. bottom) a · · · · · · · · · ·
F(λx. bottom) a · · · · · · · v

F2(λx. bottom) a · · · · v

F3(λx. bottom) a · · · · v

Under some hypotheses over F, the �xed-point equation holds, namely the
equivalence between Y F a and F (Y F) a.

30

The partiality monad

The delay type is a monad, with the now constructor as ret operation, and
the bind operation de�ned as sequencing of two computations.

CoFixpoint bind (A B: Type)

(a: delay A) (f: A -> delay B) : delay B :=

match a with

| now v => later (f v)

| later a’ => later (bind a’ f)

end.

The expected properties of sequencing hold, for instance bind a f

diverges i� a diverges or a terminates with v and f v diverges.

31

Productivity issues

Owing to the syntactic productivity criterion, the bind we just de�ned is
o�en unusable inside a coinductive de�nition.

Example: McCarthy’s 91 function.

M(n) =

{
n− 10 if n > 100
M(M(n + 11)) if n ≤ 100

CoFixpoint M (n: nat) : delay nat :=

if Nat.leb n 100

then bind (M (n + 11)) (fun x => M x)

else now (n - 10).

The corecursive calls M (n + 11) and M x are rejected because they occur
under the bind, which is not a constructor of type delay.

32

Going through the free monad
(N. A. Danielsson, Beating the Productivity Checker Using Embedded Languages, 2010)

We can work around the issue by presenting the monad as a coinductive
type, whose constructors are the operations of the partiality monad:
ret, bind, and later.

CoInductive mon: Type -> Type :=

| ret: forall (A: Type), A -> mon A

| bind: forall (A B: Type), mon A -> (A -> mon B) -> mon B

| latr: forall (A: Type), mon A -> mon A.

33

Going through the free monad

Now, function 91 is productive, indeed:

CoFixpoint M (n: nat) : mon nat :=

if Nat.leb n 100

then bind (M (n + 11)) (fun x => M x)

else ret (n - 10).

34

Going through the free monad

The description of a computation, of type mon A, is turned into a
computation, of type delay A, by the following function:

CoFixpoint interp (A: Type) (m: mon A) : delay A :=

match m with

| ret v => now v

| latr m => later (interp m)

| bind (ret v) f => later (interp (f v))

| bind (latr m) f => later (interp (bind m f))

| bind (bind a f) g =>

later (interp (bind a (fun v => bind (f v) g)))

end.

Note the use of the monadic laws bind-ret and bind-bind so as to
reduce every bind to later(interp a)

35

IV

Codata and copatterns

Types de�ned by observations

Inductive types are �nitely generated by their constructors. Likewise, we
can say that coinductive types are �nitely determined by their projections,
that is, by the observations we can make over the values of those types.

Example: streams have two projections,

hd : stream A→ A tl : stream A→ stream A

A stream s is entirely determined by the results of the observations
hd(s), hd(tl(s)), . . . , hd(tln(s)), . . .

Remark: a function f : A→ B is also a “black box” determined by the
results of the applications (observations) f a1, . . . , f an, . . .

37

Data and codata

This suggests to classify types into

Data types: integers, Booleans, A× B, A + B, all inductive types.
Codata types: functions A→ B, streams, all coinductive types.

Inductive types are presented as sums labeled by constructors.
Likewise, coinductive types are presented as products labeled by
projections (i.e. as records).

list A := 〈 nil | cons of A × list A 〉
stream A := { hd: A; tl: stream A }

38

De�ning codata

Codata is used by applying projections. But how is codata de�ned? By
equations that de�ne how it reacts to projections!

Examples: the stream from n of integers n, n + 1, n + 2, . . .:

(from n).hd = n

(from n).tl = from (n + 1)

Mapping a function f over every element of a stream:

(map f s).hd = f (s.hd)

(map f s).tl = map f (s.tl)

39

De�nitions by equations and pattern-matching

This style of de�nition is also present in Haskell and Agda to de�ne
recursive functions over inductive data, such as

double O = O

double (S x) = S (S (double x))

Symmetry: in the case of data, we need one equation per possible
constructor of the argument; in the case of codata, we need one equation
per possible projection of the result.

(map f s).hd = f (s.hd) map f nil = nil

(map f s).tl = map f (s.tl) map f (cons h t) =

cons (f h) (map f t)

40

Patterns and copatterns
(Abel, Pientka, Thibodeau, Setzer, Copatterns, POPL 2013)

Abel et al propose to unify these two styles of de�nitions by equations
with the help of patterns and copatterns.

Patterns (= possible shapes for data)
p ::= x variable
| Cstr p1 · · · pn constructor

Copattern (= possible observations over codata)
q ::= � the object being de�ned
| q p function application
| q .Proj projection

A piece of codata is, then, a list of (copattern, expression) cases.
For instance, λx.a is [(� x, a)]
and {hd = a, tl = b} is [(�.hd, a); (�.tl, b)].

41

Examples of nested copatterns

Fibonacci numbers, inductively:

fib O = S O

fib (S O) = S O

fib (S (S x)) = fib x + fib (S x)

Fibonacci numbers, as a stream:

fibs .hd = S O

fibs .tl .hd = S 0

fibs .tl .tl = zipWith plus fibs (fibs.tl)

The stream n, n− 1, . . . , 1, 0,N,N− 1, . . . , 0,N, . . .:

(cycle n) .hd = n

(cycle O) .tl = cycle N

(cycle (S n)) .tl = cycle n

42

Reduction rules

Each equation is interpreted as a reduction rule (from le� to right):

cycle (S(S(S O))).tl.tl.hd→ cycle (S(S O)).tl.hd

→ cycle (S O).hd

→ S O

The issue in Coq (non-preservation of typing) is avoided because there are
no equalities between a piece of codata and its expansion.

For instance, s and {hd = s.hd; tl = s.tl} react identically to projections,
but have no reasons to be equal.

43

Productivity and structural recursion

To guarantee normalization, simple syntactic conditions seem su�cient:
Productivity: every copattern must start with a projection
Structural recursion: if we make a recursive call over a variable x, it
must appear under a constructor in the copattern.

F x = F (S x) 8 (F x).tl = F (S x) 4 F (S x) = G(F x) 4

There are complex copatterns where productivity is less obvious:

fibs .tl .tl = zipWith plus fibs (fibs.tl)

Agda uses sized types for �ner control of productivity.

(Abel and Pientka, Wellfounded Recursion with Copatterns and Sized Types, JFP(26), 2016.)

44

V

Reactive programming
and guarded recursion

Reactive programming

Broadly speaking: any program whose purpose is to react via computations
to events coming from the outside world.

Example: a spreadsheet in “automatic recalculate” mode.

In this lecture: any program that receives a sequence of input values
i0, i1, i2, . . . and computes incrementally and “at the same pace” a sequence
of output values o0, o1, o2, . . .

46

Reactive programming = programming with streams?

It is convenient to use streams to represent the sequences of inputs, of
outputs, or of intermediate results.

However, a reactive program is not any function from streams to streams.
The function must be causal: the n-th output on depends on the past
inputs i0, . . . , in only, not on the future inputs en+1, en+2,

Examples of causal functions (4) and non-causal functions (8):

4 F s = map f s

4 F s = cons 0 s

8 F s = tl s

8 F s = cons (hd s) (F (tl (tl s)))

4 F s = cons (hd s) (cons (hd s) (F (tl (tl s))))

47

Lustre, a causal-by-construction language

A Lustre program de�nes a set of streams X1, X2, . . . by a set of
mutually-recursive equations Xi = Ei.

The expression language Ei is su�ciently restricted to guarantee causality.
It includes:

Pointwise computations: X + Y is zipWith (+) X Y.
Temporal operators that reduce to cons over streams:

cst fby X = cons cst X

pre X = cons nil X

X -> Y = cons (hd X) Y

Sampling operators over sub-clocks (represented as Boolean streams).
X when C = cons (if hd C then Pre(hd X) else Abs)

((tl X) when (tl C))

48

Enforcing causality by typing

For additional �exibility (higher-order functions), we can replace syntactic
causality conditions by type constraints.

Krishnaswami and Benton (2011–2013) extend types with a “later” modality,
written BA.

Intuitively, values of type BA are values of type A that must not be used
immediately (causality would be violated), but can be used at the next
time step.

hd : stream A→ A
tl : stream A→ B(stream A)

cons : A→ B(stream A)→ stream A

49

Examples of typings
(In the language of Clouston et al, The guarded lambda-calculus, LMCS(12), 2016)

With fix : (BA→ A)→ A, next : A→ BA, and
~ : B(A→ B)→ BA→ BB

map = λf . fix(λm. λs. cons (f (hd s)) (m~ (tl s)))

: (A→ B)→ stream A→ stream B
with m : B(stream A→ stream B)

nats = fix(λs. cons O (next (map S)~ s))

: stream nat

with s : B(stream nat)

Typing guarantees causality and productivity, while the de�nition
CoFixpoint nats := cons O (map S nats)

doesn’t even pass Coq’s syntactic productivity check.

50

Guarded recursive types
(Nakano, A modality for recursion, LICS 2000.)

We can form the recursive type µα. τ provided α is guarded in τ :
all occurrences of α are “under” a B modality.

Examples:

µα. A×Bα streams (in�nite lists)
µα. unit + A×Bα �nite or in�nite lists
µα. bool×Bα×Bα in�nite binary trees

(= deterministic automata)
µα.unit + α 8 not guarded

51

Guarded recursive types
(Clouston et al, The guarded lambda-calculus, LMCS(12), 2016)

In the “topos of trees” (lectures of Jan 9th 2019), these guarded recursive
types are interpreted by time-indexed families of non-recursive types
(hence not coinductive).

Example: the type of streams µα. A×Bα.

at time 0: unit

at time 1: A× unit

at time 2: A× A× unit
...

at time n: A× · · · A× unit (lists of length n)

Example: µα. unit + A×Bα at time n = lists of length ≤ n.

52

From guarded recursive types to coinductive types

We recover the usual coinductive types, freely usable at any time, via
another modality: �, “forever”.

Semantically, �A is the “constant object” that is the limit of the
interpretations of A at time n when n→∞. For instance:

�(µα. A×Bα) ≈ lim
n→∞

(lists of A of length n)

≈ in�nite lists of A
�(µα. unit + A×Bα) ≈ lim

n→∞
(lists of A of length ≤ n)

≈ �nite or in�nite lists of A

Restriction: A must be closed in �A.
(For example, this prohibits µα . . .�B α)

53

From guarded recursive types to coinductive types

The � modality behaves globally like the “necessarily” modality in S4
intuitionistic logic.

Γ ` a : �A

Γ ` unbox a : A

~x : ~C ` a : A

~x : ~C ` box(a) : �A

~x : ~C ` a : BA

~x : ~C ` prev(a) : A

C stands for a type constant over time: C ::= nat | C→ C | �A.

The box and unbox operators make it possible to de�ne non-causal
functions over coinductive types, such as

hdc : �(stream A)→ A = λs. hd(unbox(s))

tlc : �(stream A)→ �(stream A) = λs. box(prev(tl(unbox(s))))

54

From guarded recursion to corecursion

There is no �xed point operator corresponding to corecursion.
Instead, we must write guarded recursions, then apply box, thus
guaranteeing productivity.

Example: the stream function “take every other element”. We �rst de�ne
the function that produces a guarded recursive stream

F : �(stream A)→ stream A

= fix(λf . λs. cons(hdc(s))(g~ next(tlc(tlc(s)))))

then, using box, the function that produces a coinductive stream:

G : �(stream A)→ �(stream A)

= λs. box(F(s))

55

VI

Concluding remarks

Happy like Sisyphus?

Using these techniques for coinductive de�nitions and proofs, we can
“look in�nity square in the eye” and program and reason directly with
in�nite objects.

All this also works in type theory and in systems such as Agda and Coq.

However, productivity conditions are very strict, and coinductive reasoning
remains di�cult.
⇒ more �exible proof principles, such as parameterized coinduction
(PACO, C. K. Hur et al, 2013) and coinduction “all the way up” (D. Pous, 2016).

As shown by the example of reactive programming, “�nitary” approaches
(step-indexing, �nite approximations) are sometimes preferable to
coinductive approaches.

57

VII

Further reading

Further reading
A tutorial on set-theoretic coinduction, with application to subtyping:

B. C. Pierce: Types and Programming Languages, chapter 21,
MIT Press, 2002.

Coinduction in Coq:

Y. Bertot and P. Castéran: Interactive Theorem Proving and Program
Development, chapter 14.

The codata approach:

A. Abel, B. Pientka, D. Thibodeau, A. Setzer:
Copatterns: programming in�nite structures by observations. POPL 2013.
http://www.cse.chalmers.se/~abela/popl13.pdf

The guarded recursion approach:

R. Clouston, A. Bizjak, H. B. Grathwohl, L. Birkedal:
The Guarded Lambda-Calculus: Programming and Reasoning with Guarded
Recursion for Coinductive Types. LMCS 12(3) 2016,
https://arxiv.org/abs/1606.09455

59

http://www.cse.chalmers.se/~abela/popl13.pdf
https://arxiv.org/abs/1606.09455

	Greatest fixed points
	Infinite trees, infinite derivations
	Partiality monad
	Codata and copatterns
	Reactive programming
	Concluding remarks
	Further reading

