
Programming = proving?
The Curry-Howard correspondence today

Second lecture

Polymorphism all the way up!
From System F to the Calculus of Constructions

Xavier Leroy

Collège de France

2018-11-21



Curry-Howard in 1970

An isomorphism between simply-typed λ-calculus and intuitionistic logic
that connects

types and propositions;
terms and proofs;
reductions and cut elimination.

This second lecture shows how:

This correspondence extends to more expressive type systems and to
more powerful logics.
This correspondence inspired formal systems that are simultaneously
a logic and a programming language (Martin-Löf type theory, Calculus
of Constructions, Pure Type Systems).

2



I

Polymorphism and second-order logic



Static typing vs. genericity

Static typing with simple types (as in simply-typed λ-calculus but also as in
Algol, Pascal, etc) sometimes forces us to duplicate code.

Example
A sorting algorithm applies to any list list(t) of elements of type t, provided it
also receives then function t→ t→ bool that compares two elements of type t.

With simple types, to sort lists of integers and lists of strings, we need two
functions with di�erent types, even if they implement the same algorithm:

sort list int : (int → int → bool) → list(int) → list(int)

sort list string : (string → string → bool) → list(string) → list(string)

4



Static typing vs. genericity

There is a tension between static typing on the one hand and reusable
implementations of generic algorithms on the other hand.

Some languages elect to weaken static typing, e.g. by introducing a
universal type “any” or “?” with run-time type checking, or even by turning
typing o�:

void qsort(void * base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Instead, polymorphic typing extends the algebra of types and the typing
rules so as to give a precise type to a generic function.

5



The polymorphic lambda-calculus
(John C. Reynolds, Towards a theory of type structure, 1974)

We suggest that a solution to [the polymorphic sort function] prob-
lem is to permit types themselves to be passed as a special kind of
parameter, whose usage is restricted in a way which permits the
syntactic checking of type correctness.

Extends simply-typed lambda-calculus with the ability to abstract over a
type variable and to apply such an abstraction to a type:

Terms: M,N ::= x | λx:t.M | M N
| ΛX.M abstraction over type X
| M[t] instantiation with type t

Types: t ::= X | t1 → t2 | ∀X. t

6



The polymorphic lambda-calculus

Continuing the list sorting example, the generic sorting function can be
given type

sort list : ∀X. (X → X → bool)→ list(X)→ list(X)

Its implementation is of the following shape:

sort list = ΛX. λcmp : X → X → bool. λl : list(X). M

The function can be used for integer lists as well as for string lists just by
instantiation:

sort list[int] : (int → int → bool) → list(int) → list(int)

sort list[string] : (string → string → bool) → list(string) → list(string)

7



Typing and reduction rules

The rules of simply-typed lambda calculus:

Γ1, x : t, Γ2 ` x : t
Γ, x : t ` M : t′

Γ ` λx:t.M : t→ t′
Γ ` M : t→ t′ Γ ` N : t

Γ ` M N : t′

Plus two rules for introduction and elimination of polymorphism:

Γ ` M : t X not free in Γ

Γ ` ΛX.M : ∀X. t

Γ ` M : ∀X. t

Γ ` M[t′] : t{X ← t′}

A new form of β-reduction:

(ΛX.M)[t] →β M{X ← t}

8



Abstract types

The dual problem of reusing generic functions is the problem of
independence w.r.t. the representations of an abstract type.

Example (The abstract type of integer sets)
It is described as a type name IS (integer set) and the following constants and
operations:

{ empty: IS; add: int -> IS -> IS; member: int -> IS -> bool }

Several implementations for IS and its operations are possible, for example bit
vectors, or binary search trees.

To leave us with complete freedom to change the implementation, we would like
that programs using the IS type do not depend on its implementation (bit vectors
or search trees?) and use exclusively the constants and operations empty, add,
member.

9



Abstract types
(John C. Reynolds, Towards a theory of type structure, 1974)

Reynolds observes that a way to hide the representation of an abstract
type is to make its users polymorphic in its implementation type.

Example (Using sets of integers)
let use_intset : ∀IS. {...} -> bool =

ΛIS. λops: { empty: IS; add: int -> IS -> IS;

member: int -> IS -> bool }.
ops.member 1 (ops.add 2 ops.empty)

The IS type being a type variable, the only way to build and use values of type IS

is through the operations ops.

10



The polymorphic lambda-calculus in practice

Second-class polymorphism
(≈ polymorphic de�nitions, but monomorphic values):

Generics in Ada, Java, C#.
Hindley-Milner typing in the ML family languages (SML, OCaml,
Haskell, etc), with inference of types, of Λ and of instantiations:

Type scheme: σ ::= ∀α1, . . . αn. τ for let-bound variables
Simple types: τ ::= α | τ1 → τ2 | . . . for all other variables and values

First-class polymorphism
(≈ function parameters can have ∀ types):

Recent extensions of OCaml and of Haskell. An example in OCaml
type poly_id = { id : ’a. ’a -> ’a }

11



System F

A few years before Reynolds, circa 1970, logician Jean-Yves Girard invented
the same polymorphic lambda-calculus under the name “System F”.

Girard was motivated not by generic programming, but by the study of
second-order arithmetic via a functional interpretation (in the BHK style).

Girard knew Howard’s manuscript and acknowledges its in�uence on his
work:

System F, contrary to simply-typed λ-calculus, is constructed
around Curry-Howard, as the isomorphic image of intuitionistic
second-order propositional calculus.

(Jean-Yves Girard, The blind spot, ch.6)

12



First-order arithmetic, second-order arithmetic

First-order arithmetic:
Peano natural numbers (zero and successor)
predicate calculus
quanti�cation ∀, ∃ over numbers exclusively.

Second-order arithmetic: the same, plus
quanti�cation over sets of natural numbers,
i.e. over predicates N→ Prop,
i.e. over real numbers.

Second-order arithmetic su�ces to express a large part of calculus.

13



Functional interpretations of arithmetic

(Jean-Yves Girard, Une extension de l’interprétation fonctionnelle de Gödel à l’analyse et son
application à l’élimination des coupures dans l’analyse et la théorie des types, 1971)
(Jean-Yves Girard, Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur, thèse d’Etat, U. Paris 7, 1972)

Gödel (1958) introduced “System T” (= simply-typed λ-calculus + primitive
recursion) to develop a BHK-style functional interpretation for �rst-order
arithmetic.

Girard develops a similar approach to second-order arithmetic.

By showing normalization for his System F, he also proves a conjecture by
Takeuti (1953) concerning cut elimination for second-order arithmetic.

14



Expressiveness of System F

In System T, Gödel was forced to add numbers and recursion as primitive
constructs, because simply-typed λ-calculus cannot encode them
adequately.

In System F, these notions and many others can be expressed by encodings
similar to those of the pure λ-calculus, encodings that System F is able to
type polymorphically enough:

Natural numbers: nat ≡ ∀X. X → (X → X)→ X
Booleans: bool ≡ ∀X. X → X → X
Logical connectives:
⊥ ≡ ∀X. X
A ∧ B ≡ ∀X. (A→ B→ X)→ X
A ∨ B ≡ ∀X. (A→ X)→ (B→ X)→ X
Quanti�ers: ∃X. A ≡ ∀Y. (∀X. A→ Y)→ Y

15



Normalization for System F

Theorem (Strong normalization for F)
If Γ ` M : t, any β-reduction sequence starting with M is �nite.

The proof is considerably more di�cult than the proof of normalization for
simply-typed λ-calculus:

System F is impredicative: in ∀X.t, variable X can be instantiated by
any type, including ∀X.t.
This breaks the recursive de�nition over types used in the classic
normalization proof for simple types (Tait, 1967).

(More details in the lecture on logical relations.)

16



A �rst success for Curry-Howard

Work on System F show the Curry-Howard at work, in two di�erent ways:

A priori: Girard designs System F by searching for the typed language
that corresponds with an existing logic. By proving normalization of
the language, he shows a di�cult conjecture in logic.

A posteriori: Girard and Reynolds reach the same type system, one
while trying to solve logic problems, the other while trying to solve
programming problems.

17



II

Other dimensions of polymorphism:
higher order types, dependent types



Type constructors

In examples we used type expressions list(t), where list is a type
constructor with one parameter, that is, a function from types to types:
t 7→ list(t).

Caml, Haskell, and all typed functional languages provide ways to de�ne
type constructors having zero, one, or several parameters:

type nat = O | S of nat

type ’a list = Nil | Cons of ’a * ’a list

type (’a, ’b) alist = (’a * ’b) list

19



Abstracting over a type constructor

It makes sense to abstract (via a Λ) over a type constructor and not just
over a type.

Example (The abstract type of stacks)
Stacks containing elements of type t are modeled by a type constructor
STK with one parameter, and by the operations

empty: ∀t. STK(t)

push: ∀t. t -> STK(t) -> STK(t)

pop: ∀t. STK(t) -> option (t * STK(t))

To write clients of this abstract type in the style of Reynolds, we need to
abstract over the STK type constructor:

let use_stack =

ΛSTK. λops: { empty: ∀t. STK(t); ... }.

20



System Fω

Fω (Girard, 1972) is an extension of System F where type expressions
include functions from types to types (i.e. type constructor), and where
terms can abstract (using Λ) over all kinds of types.

Terms: M,N ::= x | λx:t.M | M N
| ΛX :: k.M abstraction over type X of kind k
| M[t] instantiation at type t

Types: t ::= X | t1 → t2
| ∀X :: k. t
| λX :: k. t type constructor with parameter X
| t1 t2 type constructor application

Kinds: k ::= ∗ regular type
| k1 ⇒ k2 type constructor

(For instance, the list type constructor has kind ∗ ⇒ ∗)

21



Kinds and types

Kinds classify types and rule out ill-formed type expressions just like types
classify terms.

Judgment Γ ` t :: k (type t is well formed and has kind k):

Γ1, X :: k, Γ2 ` X :: k

Γ, X :: k ` t :: k′

Γ ` λX :: k. t :: k⇒ k′
Γ ` t1 :: k⇒ k′ Γ ` t2 :: k

Γ ` t1 t2 :: k′

Γ ` t1 :: ∗ Γ ` t2 :: ∗

Γ ` t1 → t2 :: ∗

Γ, X :: k ` t :: ∗

Γ ` ∀X :: k.t :: ∗

This is simply-typed λ-calculus “li�ed one level up” and applied to types
and to kinds.

22



The extended Curry-Howard correspondence

System Fω intuitionistic logic

kind type

type proposition (possibly with parameters)

term proof

reductions over types the conversion rule (a deduction rule)

reductions over terms cut elimination

We recover Church (1932, 1933) lambda-calculus at the level of types:
they are lambda-terms that represent propositions.
Type-level β-reduction is Church’s β-conversion.

One level “below”, we have terms that represent proofs for these
propositions.

23



Terms and types

Same rules as in System F, plus checks over kinds and a rule to handle type
conversion:

Γ1, x : t, Γ2 ` x : t
Γ ` t :: ∗ Γ, x : t ` M : t′

Γ ` λx:t.M : t→ t′

Γ ` M : t→ t′ Γ ` N : t

Γ ` M N : t′
Γ, X :: k ` M : t

Γ ` ΛX :: k.M : ∀X :: k. t

Γ ` M : ∀X :: k. t Γ ` t′ :: k

Γ ` M[t′] : t{X ← t′}

Γ ` M : t t =β t′
(conv)

Γ ` M : t′

24



Four forms of parameterization

So far we’ve seen three parameterization mechanisms:
a term parameterized by a term: λx.M
(= functions from terms to terms)
a term parameterized by a type: ΛX.M
(= polymorphism, system F)
a type parameterized by a type: λX. t
(= type constructor, system Fω)

The fourth form is very interesting as well:
a type parameterized by a term
(= dependent types)

25



Dependent types in logic

Dependent types are analogous to predicates.

Example: the predicates even and odd over natural numbers n

even(n)
def
= n mod 2 = 0 odd(n)

def
= n mod 2 = 1

These are type constructors taking as argument a natural number n instead
of a type (as in Fω). The theorem

If n is even, n + 1 is odd

corresponds with the type

∀n : N. even(n)→ odd(n + 1)

26



Dependent types for programs

In Fortran, C or C++, the type of an array t[N] contains
a type t: the type of the array elements
a “term” (constant expression) N: the size of the array.

In other words, the array type constructor takes two parameters, a type t
and a term N, and produces the type array(t,N).

Li�ing the restriction that N is a constant expression, and allowing
ourselves to quantify over this N, we can give very precise dependent types
to array operations:

concat : ∀t.∀N1.∀N2. array(t,N1)→ array(t,N2)→ array(t,N1 + N2)

(→ P. E. Dagand’s seminar in week 2.)

27



Dependent types for programs

Quiz: are the following array types compatible?

array(t, 6) and array(t, 5 + 1)

array(t,N + M) and array(t,M + N)

array(t, fact(N)/fact(N− 1)) and array(t,N)

array(random(10)) and array(6)

We would like the types array(t,N) and array(t,N′) to be convertible as
soon as the expressions N and N′ denote the same natural number.
However, this is

undecidable if the expression language is rich enough;
unde�ned if the expression language contains e�ects.

28



Dependent types and conversion

Γ ` M : t t ≈ t′
(conv)

Γ ` M : t′

The notion of convertibility ≈ is not just β-conversion (as in Fω) but
includes other equivalences to deal with terms that can occur in the types
t and t′.

F* uses automatic theorem proving to show that t and t′ are equal modulo
theories (arithmetic, bit vectors, etc).

Coq and Agda use exclusively computation rules as equivalences, hence
array(t, 5 + 1) ≈ array(t, 1 + 5) but array(t,N + 1) 6≈ array(t, 1 + N).

To go further, we need to build and use retyping functions such as
f : ∀t.∀N. array(t,N + 1)→ array(t, 1 + N)

29



Automath and dependent types

Automath (N. de Bruijn, 1968): the �rst proof assistant; the birth of the idea
that computers can check proofs developed by humans.

Automath has “proof = lambda-term” but not “proposition = type”:

Types: t ::= bool the type of propositions
| T(b) the dependent type of proofs of b : bool
| t1 → t2

Logical connectives live within the term level and do not need to be
re�ected at the type level

∧ : bool→ bool→ bool ∀ : (bool→ bool)→ bool

This approach is used in the Edinburgh Logical Framework (LF), a
“meta”-formalism to de�ne logics and languages.

30



Barendregt’s lambda-cube

Three directions to extend simply-typed lambda-calculus:

simple
types LF

F

Fω
Calculus of
Constructions

dependent types

type constructorspo
ly

m
or

ph
is

m

31



III

Pure Type Systems



Towards uni�cation

Between 1971 and 1985 several formal systems appear that are

directly inspired by Howard’s notes;
usable as intuitionistic logics and as typed lambda-calculi;
combining polymorphism, type constructors, and dependent types;
more expressive than F, Fω and LF.

33



History

Martin-Löf’s intuitionistic type theory (MLTT):
A constructive logic based on dependent types.
A few type constructors, including Π (dependent function types) and Σ
(dependent product types).
1971–1979: several successive versions.

The Calculus of Constructions (CC):
Coquand & Huet, 1986–1988: Fω + dependent types.
Many extensions during the development of Coq.

The Pure Type Systems (PTS):
Berardi, 1988; Terlouw, 1989; Barendregt, 1992: a uni�ed reformulation.

34



One lambda, one Pi, many terms

In Fω :
Three syntactic categories: terms, types, kinds.
Three lambdas: λx : t.M / ΛX :: k.M / λx :: k. t
Three function types: t1 → t2 / ∀X :: k. t / k1 ⇒ k2.

In PTS:
Same syntax for terms, types, and kinds.
A single lambda λx : A. B for all abstractions.
A single type Πx : A. B (dependent function type) for all lambdas.
Universes to distinguish terms, types, kinds, etc.

35



Pure Type Systems: syntax

Universe: U ∈ U
Terms, types: A, B, C ::= x variables

| λx : A. B abstractions
| A B applications
| Πx : A. B function type
| U universe name

Notation: A→ B def
= Πx : A. B if x not free in B.

36



Example: encoding Fω

Two universes: ∗ for types, � for kinds.

Terms: λx : t. M ≡ λx : t. M with t : ∗
ΛX :: k. M ≡ λX : k. M with k : �

Types: t1 → t2 ≡ t1 → t2 with t1, t2 : ∗
∀X :: k. t ≡ ΠX : k. t with k : �, t : ∗

Kinds: ∗ ≡ ∗ with ∗ : �

k1 ⇒ k2 ≡ k1 → k2 with k1, k2 : �

37



Pure Type Systems: typing

(U,U′) ∈ A
(ax)

∅ ` U : U′

Γ ` A : U
(var)

Γ, x : A ` x : A

Γ ` A : B Γ ` C : U
(wk)

Γ, x : C ` A : B

Γ ` A : U1 Γ, x : A ` B : U2 (U1,U2,U3) ∈ R
(pi)

Γ ` Πx : A.B : U3

Γ, x : A ` B : C Γ ` Πx : A.C : U
(abstr)

Γ ` λx.A. B : Πx.A. C

Γ ` f : Πx : A. B Γ ` a : A
(app)

Γ ` f a : B{x← a}

Γ ` A : B Γ ` B′ : U B =β B′
(conv)

Γ ` A : B′

38



Controlling expressiveness via universes

A speci�c PTS is obtained by de�ning
the set U of universes;
the relation A ⊆ U × U that states which universe belong to which
universe;
the relationR ⊆ U × U × U that states what can be parameterized
over what.

(U,U′) ∈ A
(ax)

∅ ` U : U′

Γ ` A : U1 Γ, x : A ` B : U2 (U1,U2,U3) ∈ R
(pi)

Γ ` Πx : A.B : U3

39



Barendregt’s cube

The systems from Barendregt’s cube have U = {∗,�}, where
∗ the universe of types;
� the universe of sorts (the types of types);
A = { (∗,�) }, that is, ∗ : �

The 3 dimensions of the cube are controlled by relationR:

Feature elt. ofR supported functions
simple types (∗, ∗, ∗) from terms to terms
polymorphism (�, ∗, ∗) from types to terms
type constructors (�,�,�) from types to types
dependent types (∗,�,�) from terms to types

40



Playing with universes

Additional universes:
E.g. a variant of CC splits ∗ in two universes, Prop and Set.
Prop: the universe of logical propositions
Set: the universe of data types and computable functions.

In�nitely many universes: ∗0 : ∗1 : · · · : ∗n : ∗n+1 : · · ·
Russell-style strati�cation.

A single universe: ∗ : ∗ (read: “Type colon Type”)

Danger warning! Logical paradox!!

41



The Burali-Forti paradox (1897)

Assume that the set O of all ordinals exists.

The order <ord between ordinals is a well-order over O.

Hence O ordered by <ord is an ordinal.

Besides, O is strictly greater than any ordinal.

Hence O <ord O and a contradiction.

42



Burali-Forti in Coq with Type:Type

Let U be a universe such that we can de�ne the following type
(the type of well-ordered types):

Record ord : U := mkord {

carrier: U;

rel: carrier -> carrier -> Prop;

rel_wf: well_founded rel

}.

This is the strict order over this type of ordinals:

Record emb (A B: ord) : Prop := {

f: carrier A -> carrier B;

f_inj: forall x y, rel A x y -> rel B (f x) (f y);

sup: B;

f_sup: forall x, rel B (f x) sup

}.

43



Burali-Forti in Coq with Type:Type

This order is well founded:

Lemma wf_emb: well_founded emb.

We can therefore de�ne the ordinal of all ordinals:

Definition Omega: ord := mkord ord emb wf_emb.

If this de�nition is accepted by Coq, we have a paradox:

Lemma emb_Omega_Omega: emb Omega Omega.

Lemma paradox: False. (* emb_Omega_Omega contradicts wf_emb *)

44



Paradox avoided (almost)

Universe U Coq options what happens

Typei default ord : Typei+1 bur not ord : Typei
Omega not de�nable

Type -type-in-type a proof of False

Prop default projection carrier: ord -> Prop

not de�nable

Set -impredicative-set projection carrier: ord -> Set

not de�nable

45



Girard’s paradox (1972)

System U: an extension of Fω with polymorphism over kinds.
Three universes: ∗ : � : 4
Formation rules: those of Fω plus (4, ∗, ∗) and (4,�,�).

Makes it possible to write e.g.
λk : �. λα : k→ k. λβ : k. α (α β) : Πk : �. (k→ k)→ (k→ k)

Girard’s paradox: an encoding of the Burali-Forti paradox in System U,
more subtle than the previous encoding with Type:Type.

Corollary: this shows that MLTT 1971 (with Type:Type) is inconsistent as a
logic. Later versions of MLTT are strati�ed using universes.

(See also https://github.com/coq-contribs/paradoxes)

46

https://github.com/coq-contribs/paradoxes


Predicativity and impredicativity

Russell’s “vicious circle principle”

Whatever involves all of a collection must not be one of the collec-
tion.

Predicativity: ΠX : U. A lives in a universe “above” U.
In other words: no “vicious circle” in the sense of Russell.
Example: (ΠX : Typen. A) : Typen+1 in MLTT, Coq, Agda.

Impredicativity: ΠX : U. A lives in universe U or below.
In other words: it is possible to quantify “over one self”.
Example: (∀X: ∗ . t) : ∗ in System F and Fω
Example: (forall (P: Prop), Q) : Prop in Coq.

47



Cumulativity and universe polymorphism

How to make a de�nition usable in several universes?

Cumulativity: a form of subtyping between universes.

Γ ` A : Typei

Γ ` A : Typei+1

Polymorphism: add universe variables i and ways to quantify universally
over them, For instance in Coq:

Polymorphic Definition idtype@{i} : Type@{i+1} :=

forall A: Type@{i}, A -> A.

Polymorphic Definition identity@{i} : idtype@{i} :=

fun (A: Type@{i}) (x: A) => x.

Symbolic expressions for universes: u ::= U | i | u + 1 | max(u1, u2)

48



Application: Coq and Agda

Coq Agda

Universes Prop

Set = Type0
Type1, . . . , Typen, . . .

Set = Set0
Set1, . . . , Setn, . . .

Impredicative? Prop (and, earlier, Set) no

R (Typei, Typej, Typemax(i,j))
(U, Prop, Prop)

(Seti, Setj, Setmax(i,j))

Cumulativity? yes no

Polymorphism? yes (recently) yes (recently)

49



IV

Summary



Curry-Howard, continued

Presented today:

Explorations of many extensions:
polymorphism, type constructors, dependent types,
Type: Type, universes, . . .
Convergence towards Pure Type Systems, a family of typed
lambda-calculi usable as programming languages and as intuitionistic
logics. . .
. . . but centered on functions and their Π-types, that is, on the logic
connectors⇒ and ∀.

Next week:

Other data types? Other logical connectives?
General mechanisms to de�ne data types and logical connectives:
inductive types and inductive predicates.

51



V

Further reading



Further reading

Jean-Yves Girard. The blind spot: Lectures on logic. European
Mathematical Society, 2011. Chapter 6.
Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.
Chapters 22, 23, 24, 29, 30.
Morten Heine Sørensen, Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism. 1998. Chapters 11 to 14.
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf

53

https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf

	Polymorphism and second-order logic
	Higher order types, dependent types
	Pure Type Systems
	Summary
	Further reading

