
Programming = proving?
The Curry-Howard correspondence today

Final lecture

Conclusions, answers to questions, discussion

Xavier Leroy

Collège de France

2019-01-30



I

Summary of the course



The Curry-Howard correspondence

simply-typed λ-calculus intuitionistic logic
type proposition
term (program) proof
reduction (execution) cut elimination
A→ B implication
A× B conjunction
A + B disjunction
empty type, unit type ⊥, >

Distinct from the “proposition = program” approach
(Church’s 1942 λ-calculus, logic programming).

“Implements” the BHK interpretation of intuitionistic logic.

3



Modern type theories

Richer types and propositions: polymorphism, dependent types, equality.

Syntactic uni�cation between terms and types, controlled by universes.

⇒ Uni�ed formalisms for programming and for proving:
Martin-Löf’s type theory, the Calculus of Constructions, Pure Type Systems.

4



The Curry-Howard-Martin Löf correspondence

Type theory Set theory Intuitionistic logic
A : U set proposition
A : U — type
x : A element proof
0, 1 ∅, {∅} ⊥, >
A× B Cartesian product conjunction
A + B disjoint union disjunction
A→ B sets of functions implications
x : A ` B(x) families of sets predicate
x : A ` b : B(x) families of elements proof under hypothesis
Πx : A. B(x) product “for all” quanti�er
Σx : A. B(x) disjoint sum “there exists” quanti�er
x =A y equality equality
p : x =A y — equality proof

5



The Curry-Howard-Martin Löf-Voevodsky correspondence
(From Emily Riehl’s presentation at the Vladimir Voevodsky memorial conference, 2018)

Type theory set theory logic homotopy theory
A : U set proposition space
A : U — type —
x : A element proof point
0, 1 ∅, {∅} ⊥, > ∅, ∗
A× B Cartesian product conjunction product space
A + B disjoint union disjunction coproduct
A→ B set of functions implication function space
x : A ` B(x) family of sets predicate �bration
x : A ` b : B(x) family of elements proof under hyp. section
Πx : A. B(x) product “for all” space of sections
Σx : A. B(x) disjoint sum “there exists” total space
x =A y equality equality path space for A
p : x =A y — equality proof path from x to y

6



Inductive types and inductive predicates

A general mechanism to de�ne
data types generated by constructors;
predicates generated by axioms and rules;

as well as the corresponding recursive functions and inductive proofs.

Extends mutatis mutandis to coinduction and to codata.

7



Towards classical logic

Nice correspondences:
double negation translations /

continuation-passing style (CPS) translations;
classical laws / control operators (call/cc).

A question remains open: what is“the right” calculus to express the
computational contents of a classical proof?
(symmetric lambda-calculi, Krivine-style machines, process calculi,
interaction nets, etc.)

8



Transforming programs and proofs

Transforming programs of a language L1 into a language L2:
a standard technique in compilation, semantics, and programming.

Transforming propositions and proofs from a logic L1 to a logic L2:
double negation translations;
intuitionistic forcing;
parametricity in the style of Bernardy et al;
syntactic models such as those of Boulier, Pédrot and Tabareau;
etc.

9



E�ects

The main e�ects:
Partiality (general recursion, non-termination).
Mutability (“in-place” modi�cations).
Exceptions, control operators.
Communications: input-output, shared-memory parallelism,
message-passing parallelism.

Monads as a representation for many e�ects.

Algebraic e�ects and e�ect handlers as a more �exible representation of
some of these e�ects.

Program logics to reason about some of these e�ects
(Hoare logic, separation logics, etc).

No generally-applicable correspondence with logic.

10



A few tools for semantics

Tools more or less inspired by logic to reason about programs and give
semantics to programming languages:

Logical relations, indexed by types or by step counts (step-indexing).

The “topos of trees” and its “later” modality B, to build semantic
objects (and reactive programs!) by guarded recursion.

11



II

Does Curry-Howard make me
a better programmer?



The primacy of pure, total, functional programming

At the core of any program, there is a collection of pure, total functions
(no state, always terminating).

At the core of any programming language, there should be a pure functional
language, preferably typed, preferably guaranteeing termination.

A few reasons:
These functions are both programs and mathematical de�nitions,
over which we can reason directly (without a program logic).
“Pure + total” enables static typing with rich types:
dependent types, HIT-style equations, etc.
“Pure + total” enables the language to express proof terms.

13



Partiality and general recursion

Bad reasons:
“In order to be Turing-complete.”
(All useful computations are provably terminating.)
“A Web server must never terminate!”
(But the processing of every request must terminate⇒ productivity.)

Good reasons:
Proving the termination of an algorithm can be di�cult.
Coding an algorithm in a normalizing language is even more di�cult.
For many applications, partial correctness is enough.

Beyond termination:
Guaranteeing worst-case execution time (WCET).
Guaranteeing a given asymptotic complexity.

14



Imperative programming and mutable data structures

Bad reasons:
“A algorithm is a cooking recipe!”
“That’s the way hardware works!”

Good reasons:
Many of the fastest known algorithms use mutable state
(functional algorithms are slower by a factor log n).
Low-level systems programming.

Reconciliation:
Encapsulating mutable state in a pure interface.
Linearity and control of sharing: separation logic, ownership types,
types as permissions, the Rust language.

15



Objects, classes, inheritance, modules, components, . . .

Bad reasons:
“Nature is a class hierarchy.”
Every piece of code must be extensible a posteriori, whatever it costs.

Good reasons:
Reusing code and its veri�cation.
Modular decomposition + abstraction barriers.
(A source of inspiration: algebraic structures.)
The base mechanisms are well understood: function abstractions (λ),
type abstractions (∃), parametric polymorphism (∀).

Beyond the base mechanisms:
Many higher-level mechanisms, poorly understood, ine�ective.

16



III

Questions and discussions


	Summary of the course
	A better programmer?
	Questions and discussions

