
Programming = proving?
The Curry-Howard correspondence today

Introduction

Xavier Leroy

Collège de France

2018-11-21

Computer science and mathematical logic

Since its inception, computer science has taken many ideas and many
principles from mathematical logic.

(Church, Turing, von Neumann, and many other founders of computer
science were logicians or had beed trained in logic.)

The 2018 lectures are devoted to an especially strong and seminal
interaction between logic and computer science, and more precisely
between proof theory and programming languages.

2

Programming with logic

Many programming languages treat programs as formulas of a logic:

Logic programming (Prolog, Mercury, . . .)
Constraint programming (Prolog III, CHIP, Oz, . . .)
Queries in relational databases.

Executing the program amounts to proving or refuting the corresponding
logical formula.

3

An example in Prolog

A Prolog program:

append([], L, L).

append([H|T], L, [H|M]) :- append(T, L, M).

?- append(X, Y, [1,2,3]).

These Horn clauses and the �nal query de�ne a logical formula:

(∀L, append([], L, L))
∧ (∀H, T, L,M, append(T, L,M) ⇒ append([H|T], L, [H|M]))
⇒ ∃X, Y, append(X, Y, [1, 2, 3])

Executing the program amounts to proving this proposition by �nding
appropriate X, Y that satisfy the ∃.

4

Proposition = program

Logic programming falls within a rather natural correspondence . . .
which is not the Curry-Howard correspondence:

programming language mathematical logic

program proposition

execution proof

5

The Curry-Howard correspondence

An isomorphism between an intuitionistic logic and the simply-typed
λ-calculus (the core of a functional programming language).

simply-typed λ-calculus intuitionistic logic

type proposition

term (programme) proof

reduction (execution) cut elimination
(normalization)

Complete change of viewpoint: programs are no longer propositions, but
the proofs of propositions.

6

The Curry-Howard correspondence

Inspires a new perspective on logics and on programming languages,
summarized by the “PAT principle”:

Propositions As Types

Proofs As Terms

7

Programming = proving?

Far from being a coincidence, the Curry-Howard correspondence has
developed into a deep structural link between languages and logics, and
between programming and proving.

Correspondences between other, more expressive logics and
languages, e.g. second-order arithmetic and polymorphic
lambda-calculus.

Formalisms that can be used both as logics and as programming
languages: Martin-Löf type theory, the Calculus of Constructions,

Tools that can be used both as proof assistants and as programming
environments: Coq, Agda, . . .

8

Curry-Howard today

A guiding principle to design, understand, and formalize programming
languages (mostly, but not only, functional languages).

A new perspective on classical mathematics: what is the computational
contents of a proof?

New ways to program, integrating formal veri�cation better (dependent
types, etc).

New ways to do mathematics, leveraging the power of the computer.

Powerful and versatile tools such as Coq and Agda, to help us explore this
border between computer science and mathematics.

9

Seminar talks

28 nov: Pierre-Évariste Dagand, Les types dépendants: tout un
programme!
5 déc: Assia Mahboubi, Mathématiques assistées par ordinateur
12 déc: Matthieu Sozeau, Programmer avec Coq: récursion et �ltrage
dépendant
19 déc: Guillaume Munch-Maccagnoni, Peut-on dupliquer un objet?
Linéarité et contrôle des ressources
16 jan: Alexandre Miquel, Forcing et réalisabilité: vers l’uni�cation
23 jan: Christine Tasson, Sémantique des programmes fonctionnels
probabilistes, à la lumière de la logique linéaire
30 jan: Thierry Coquand, Du calcul des constructions à la théorie des
types univalente

10

