
Formal Veri�ation of a Memory Modelfor C -Like Imperative LanguagesSandrine Blazy and Xavier LeroyINRIA Roquenourt78 153 Le Chesnay edex, Frane{Sandrine.Blazy, Xavier.Leroy}�inria.frAbstrat. This paper presents a formal veri�ation with the Coq proofassistant of a memory model for C -like imperative languages. This modelde�nes the memory layout and the operations that manage the mem-ory. The model has been spei�ed at two levels of abstration and im-plemented as part of an ongoing erti�ation in Coq of a moderately-optimising C ompiler. Many properties of the memory have been ver-i�ed in the spei�ation. They failitate the de�nition of preise formalsemantis of C pointers. A erti�ed OCaml ode implementing the mem-ory model has been automatially extrated from the spei�ations.1 IntrodutionFormal veri�ation of omputer programs � be it by model heking, programproof, stati analysis, or any other means � obviously requires that the semantisof the programming language in whih the program is written be formalized ina way that is exploitable by the veri�ation tools used. In the ase of programproofs, these formal semantis are often presented as operational semantis orspeialized logis suh as Hoare logi. The need for formal semantis is evenhigher when the program being veri�ed itself operates over programs: ompilers,program analyzers, et. In the ase of a ompiler, for instane, no less thanthree formal semantis are required: one for the implementation language of theompiler, one for the soure language, and one for the target language. Moregenerally speaking, formal semantis �on mahine� (that is, presented in a formthat an be exploited by veri�ation tools) are an important aspet of formalmethods.Formal semantis are relatively straightforward in the ase of delarative pro-gramming languages suh as pure funtional or logi languages. Many programsthat require formal veri�ation are written in imperative languages, however.These languages feature assignments to variables and in-plae modi�ation ofdata strutures. Giving semantis to these imperative onstruts requires thedevelopment of an adequate memory model, that is, a formal desription of thememory layout and the operations over it. The memory model is often one of themost deliate parts of a formal semantis for an imperative programming lan-guage: an exessively onrete memory model (e.g. representing the memory as a



2 Sandrine Blazy, Xavier Leroysingle array of bytes) an fail to validate algebrai laws over loads and stores thatare atually valid in the programming language and thus make program proofsmore di�ult; an exessively abstrat memory model an fail to aount for e.g.aliasing or partial overlap between memory areas, thus ausing the semantis tobe inorret.This paper reports on the design, formalization and veri�ation, using theCoq proof assistant, of a memory model for C -like imperative languages. Inaddition to being widely used for programming safety-ritial software, C andrelated languages are hallenging from the standpoint of the memory model,beause they feature both pointers and pointer arithmeti, on the one hand, andisolation and freshness guarantees on the other. For instane, pointer arithmetian result in aliasing or partial overlap between the memory areas referened bytwo pointers; yet, it is guaranteed that the memory areas orresponding to twodistint variables or two suessive alls to mallo are disjoint. This stands inontrast with both higher-level imperative languages suh as Java, where twodistint referenes always refer to disjoint data, and lower-level languages suhas mahine ode, where unrestrited address arithmeti invalidates all isolationguarantees.The memory model presented here is used in the formal veri�ation of amoderately-optimising ompiler that translates a large subset of the C pro-gramming language down to PowerPC assembly ode [13℄. The memory modelis used by the formal semantis of all languages manipulated by the ompiler:the soure language (large subset of C ), the target language (subset of PowerPCassembly), and 5 intermediate languages that bridge the semanti gap betweensoure and target. Certain passes of the ompiler perform non-trivial transfor-mations on memory alloations and aesses: for instane, the auto variables ofa C funtion, initially mapped to individually-alloated memory bloks, are atsome point mapped to sub-bloks of a single stak-alloated ativation reord,whih at a later point is extended to make room for storing spilled temporaries.Proving the orretness (semanti preservation) of these transformations requireextensive reasoning over the memory model, using the properties of this modelgiven further in the paper.The remainder of this paper is organized as follows. Setion 2 presents howwe have formally veri�ed a ompiler with the Coq proof assistant. Setion 3desribes the formal veri�ation of our memory model. Setion 4 explains howOCaml ode has been automatially generated from this veri�ation. Setion 5disusses related work. Finally, setion 6 onludes.2 Certi�ation of a C -like CompilerThe formal veri�ation of a ompiler is the formal proof of the following equiva-lene result: any soure program that terminates on some �nal memory state isompiled into a program that also terminates and produes the same memorystate. Usually, suh an equivalene result relies on a more general notion of equiv-alene between memory states. But, our memory model aims at failitating this



Formal Veri�ation of a Memory Model for C -Like Imperative Languages 3orretness proof and it is designed in suh a way that the memory states are thesame at the end of the exeution of soure and ompiled programs. The orret-ness result is not proved diretly but in several steps. Eah step orresponds to atransformation (that is, either a translation or an optimisation) ahieved by theompiler. Eah orretness proof of a transformation proeeds by indution onthe exeution of the original program using a simulation lemma: if the originalprogram exeutes one statement, the transformed program exeutes zero, one orseveral statements.Our ompiler treats a large subset of C. It ompiles any C program in whihjump statements (i.e. goto, setjmp and longjmp) are not allowed, and funtionshave a �xed number of arguments. The expression evaluation order is de�nedin the ompiler: expressions are evaluated from left to right, thus leaving lessfreedom to the ompiler. Furthermore, as dynami alloation of variables is doneexpliitly in C by alling the library funtions mallo and free, the semantisof these funtions is not de�ned in our formal semantis and there is no garbageolletor in the ompiler. The proof that these funtions ensure lak of danglingpointers is thus out of the sope of this paper.The formal veri�ation of the memory model belongs to an ongoing formalveri�ation with the Coq proof assistant of this ompiler, and it onsists of:� a formal spei�ation at several levels of abstration a memory model,� a formal proof about many properties of this memory model,� the automati generation from the spei�ation of a erti�ed ode that ver-i�es the same properties as the formal spei�ation.The Coq proof assistant [1, 4℄ onsists mainly of a language alled Gallina forwriting formal spei�ations and a language for developing mathematial proofsto verify some properties on the formal spei�ations. Gallina relies on the Cal-ulus of Indutive Construtions, a higher-order typed λ−alulus with depen-dent types and apabilities for indutive de�nitions. Proving a simple propertyonsists in writing interatively proof ommands that are alled tatis. Tatismay also onsist of user-de�ned tatis, thus making it possible to deompose aproperty into simpler reasoning steps and to reuse proof sripts.Coq provides a way to struture spei�ations in large units alled modules.The Coq module system [7℄ reuses the main features of the OCaml module sys-tem. A module is a olletion of de�nitions of types, values and modules. Itonsists of two parts: a signature and an implementation. The signature of amodule is an abstrat spei�ation of the omponents that must our in allpossible implementations of that module. The type of a module is its signature.Modules an be parametrised by modules. Parametrised modules are alled fun-tors (i.e. funtions from modules to modules). One way to build modules is toapply a funtor. The other way is to build it de�nition by de�nition. A modulemay be assoiated with a signature to verify that the de�nitions of the mod-ule are ompatible with the signature. Properties may be de�ned in modules.When a property is de�ned in the signature of a module, it must be proved inany implementation of this module. The property is thus alled an axiom (resp.theorem) in the signature (resp. implementation) of the module.



4 Sandrine Blazy, Xavier LeroyCoq provides also an automated mehanism for extrating funtional pro-grams from spei�ations [14℄. The extration from a Coq funtion or proofremoves all logial statements (i.e. prediates) and translates the remaining on-tent to a program written in OCaml. As the extrated program veri�es the sameproperties as the Coq spei�ation, the extrated ode is alled the erti�ed ode.The Coq extration mehanism handles the module system: Coq modules are ex-trated to OCaml modules, Coq signatures are extrated to OCaml signatures,and Coq funtors are extrated to OCaml funtors.3 Formal Spei�ationThis setion desribes the formal veri�ation in Coq of our memory model. Itspei�es the memory layout and the operations that manage the memory. Thisformal spei�ation is written at two levels of abstration:� The abstrat spei�ation is suitable for most of imperative languages. Itde�nes a general memory model, parametrised by some harateristis ofthe language it applies to (e.g. the values of the language), and propertiesthat need to be veri�ed by a more onrete spei�ation.� The onrete spei�ation is devoted to C -like languages with pointer arith-meti. It implements the operations de�ned in the abstrat spei�ation,and proves that they satisfy the abstrat spei�ation. The properties thathave been stated in the abstrat spei�ation are proved in the onretespei�ation. Other properties are also stated (and proved) in the onretespei�ation.This setion presents two onrete spei�ations. The �rst one is devoted to anin�nite memory model of a C ompiler. The seond one de�nes a �nite memorymodel that orresponds to the �rst onrete spei�ation. In this paper, wewill use familiar mathematial notation to present our development in Coq. Forinstane, indutive de�nitions will be presented in BNF format and Coq arrowswill be replaed by either onjuntions or impliations.3.1 Abstrat Spei�ationThe abstrat spei�ation de�nes the memory layout in terms of reords andmaps. Several types are left unspei�ed. The operations that manage the memoryare only de�ned by their types. Some axioms are also de�ned in the abstratspei�ation.Memory Layout Figure 1 desribes the types that speify the memory layout.The memory is separated into four areas that do not overlap:� the free memory alled memfree that an be alloated during the exeutionof a program,



Formal Veri�ation of a Memory Model for C -Like Imperative Languages 5� the null memory alled memnull that is not aessible during the exeutionof a program,� the memory alled memdata that stores data,� the memory alled memcode that stores ode, i.e. the proedures of a pro-gram. 1The type of memory is alled Tmem. It is a reord whose four �elds repre-sent the four areas. Eah area is represented by a map (that is, a partial �nitefuntion) of type Tmemi from bloks identi�ers Tblok to bloks Tblock i, where
i denotes a memory area. Tblok is an ordered type and ≤ denotes an orderrelation on Tblok. A blok onsists of a low bound, a high bound and a mapfrom o�sets Tofs (i.e. ells identi�ers) to memory ells Tcell i. Tcell i is equippedwith a omparison relation that we write =. The high and low bounds of a blokare blok identi�ers. The ontents of the ells in a blok depend on the area theblok belongs to. Usually, eah ell of the data area stores a value on a givennumber of bytes. Eah ell of the ode area stores a proedure (i.e. a C fun-tion). Eah ell of the null area stores either a dealloated ell or a null ell thathas never been dealloated.The types that are left unspei�ed in the abstrat spei�ation are related tothe way bloks and ells are addressed (f. Tblok and Tofs) and to the ontentsof memory ells (f. Tcelli , ∀i ∈ {data, free, null} and Tproedure). The fourareas of the memory are handled in a similar way. For spae reasons, this paperfouses on the memory area that stores data.Memory layout:

Tmem ::= {memdata := Tmemdata

;memfree := Tmemfree

;memnull := Tmemnull

;memcode := Tmemcode }Memory areas:
∀i ∈ {data, free, null, code}, Tmemi ::= Map (Tblock ,Tblock i)Memory bloks:
∀i ∈ {data, free, null}, Tblock i ::= {high := Tblock

; low := Tblock

; contents := Map (Tofs,Tcelli) }
Tblock code ::= TprocedureFig. 1. Abstrat spei�ation of the memory layout: type de�nitions.1 In the sequel of this paper, we use the word proedure to denote a C funtion. Theword funtion is reserved to Coq mathematial funtions that are de�ned in thespei�ation.



6 Sandrine Blazy, Xavier LeroyFigure 2 de�nes some relations between bloks and memory and some of theirproperties. The relation alled valid data blok states that a blok b is valid withrespet to a memory m if it has been alloated in the area of m that stores data(i.e. it belongs to the domain of the mapm.memdata.). This relation is often usedas a preondition in the operations that manage the memory (see for instanethe de�nition of load in �gure 5). The axiom alled valid not valid di� statesthat any blok is either valid or not.The relation alled blok agree is an agreement relation between bloks. Twobloks belonging to two memories agree between two bounds alled lo and hi ifthey share a same identi�er b and if eah of their ells that is between the boundslo and hi, stores the same value. This relation is an equivalene relation: it veri�esthe three axioms alled blok agree re�, blok agree sym and blok agree trans.The relation alled extends states that a memory m2 extends another mem-ory m1 if eah valid blok b of m1 is also a blok of m2. More preisely, if bidenti�es a valid blok (m1.memdata)(b) of m1, then it identi�es also a biggerblok (m2.memdata)(b) of m2 (i.e. a blok suh that its ells are inluded inthe ells of (m2.memdata)(b)) and both bloks agree between the bounds of thesmallest blok m1(b). The piture of �gure 2 shows an example of two suhbloks. The ompilation proess relies on a run-time stak of memory bloksalled stak frames. At the beginning of the ompilation proess of a program,a stak frame is alloated for eah instane of a alled proedure. Informationthat are omputed in further steps of the ompilation proess are stored in stakframes and reused in further steps of the proess. The relation alled extends isuseful to speify the extension of stak frames during the ompilation proess.Memory Management The main operations that manage the memory areallo, free, load and store. They are spei�ed in the �gure 3, where allo, load andstore are related to the memory area that stores data. Similar operations relatedto the memory area that stores ode have also been spei�ed. Eah operationthat manage the memory may fail (e.g. allo may fail if there are no free ellsleft). Thus, its results is of type option(τ). The values of suh a type are eitherNone (when the operation fails) or Some(v) where v is of type τ .load and store operations are parametrised by memory hunks. A memoryhunk indiates the size and the type of aessed data. Its type is alled Thunkand is left unspei�ed in the abstrat spei�ation. Memory hunks ensure thateah load operation follows a store operation that supplied the value retrievedby the load. For instane, when an operation suh as (store hunk1 m1 b ofs1= Some m2 ) is followed by an operation suh as (load hunk2 m b ofs2 ) thenthe load does not fail only if hunk1, hunk2, ofs1 and ofs2 are ompatible.The funtionalities of the memory management operations are the following:� allo is the funtion that alloates a blok with given bounds. If it does notfail, this funtion yields a newly alloated blok and the modi�ed memory.� free is the funtion that dealloates a given blok of data.� load is the funtion that given a memory hunk fethes the value stored in agiven blok of data.
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De�nition valid data blok (m: Tmem) (b: Tblok) := b ∈ domain(m.memdata).Axiom valid not valid di�:

∀ (m: Tmem) (b b' : Tblok),valid data blok m b ∧ ¬(valid data blok m b') ⇒ b 6= b'.De�nition blok agree (b: Tblock) (lo hi : Tblok) (m1 m2 : Tmem) :=
∀ ofs ∈ [lo,hi ℄,((m1.memdata)(b).ontents)(ofs) = ((m2.memdata)(b).ontents)(ofs).Axiom blok agree re�:
∀ (m: Tmem) (b: Tblok) (lo hi : Tblok),blok agree b lo hi m m.Axiom blok agree sym:
∀ (m1 m2 : Tmem) (b: Tblock) (lo hi : Tblok),blok agree b lo hi m1 m2 ⇒blok agree b lo hi m2 m1.Axiom blok agree trans:
∀ (m1 m2 m3 : Tmem) (b: Tblock) (lo hi : Tblok),blok agree b lo hi m1 m2 ∧ blok agree b lo hi m2 m3 ⇒blok agree b lo hi m1 m3.De�nition extends (m1 m2 : Tmem) :=
∀ (b: Tblock),valid data blok m1 b ⇒(m2.memdata)(b).low ≤ (m1.memdata)(b).low ∧(m1.memdata)(b).high ≤ (m2.memdata)(b).high ∧blok agree b (m1.memdata)(b).low (m1.memdata)(b).high m1 m2

(m2.memdata) (b)

(m1.memdata) (b)

(m2.memdata) (b).high(m2.memdata) (b).low

(m1.memdata) (b).high

(m1.memdata) (b).lowFig. 2. Abstrat spei�ation of the memory layout: properties.



8 Sandrine Blazy, Xavier Leroy� store is the funtion that given a memory hunk stores a value in a givenblok of data. The load (resp. store) funtion fails if the value to load (resp.store) is not ompatible with the memory hunk and the o�set (e.g. if thememory hunk is to large). As these funtions are left unspei�ed at theabstrat level, this property onsists of axioms suh as loaded blok is validand loaded blok is in bounds that will be proved one the funtions will bede�ned.The axiom alled loaded blok is in bounds uses a property alled in boundsthat de�nes when a value may be loaded from or stored in the two boundsof a blok. in bounds is used as a preondition that triggers loads and storesin memory. As blok identi�ers and o�sets are left unspei�ed in the abstratspei�ation, in bounds is also left unspei�ed. It is a relation, i.e. a funtionthat yields values of a type alled Prop. This Coq type is used to de�ne logialpropositions.Other properties of the operations that manage the memory express that therelations between bloks are preserved by the memory management operations.For instane, the axiom alled valid blok store expresses that the load operationdoes not invalidate valid bloks. More preisely, it states that if a value v isstored in a memorym1.memdata, any blok b that was valid before the operationremains valid after. The axiom alled store agree states that the store operationpreserves the agreement relation. The axiom load extends states that the loadoperation preserves the extension relation. Figure 3 shows only some axioms ofthe spei�ation. Similar axioms have been de�ned for all memory managementoperations.3.2 Implementation of an In�nite MemoryThis setion presents an implementation of our memory model that is devotedto a C-like ompiler. The implementation of values and addresses is adapted toC pointer arithmeti and the implementation of memory hunks follows the Carithmeti types. In this implementation, the memory is unlimited and thus thealloation never fails. New properties of the memory management are added inthis implementation.For eah language manipulated by our ompiler, we have enoded in Coqoperational semantis rules that detail how the memory is aessed and modi�edduring the exeution of a program. For instane, the evaluation of a proedurerespets the following judgements of the soure and target languages of theompiler (alled respetively C and PPC ):
Gc ⊢ pc, lv, m ⇒ v, m′ states that in the global environment Gc and the memory

m, the evaluation in C of the proedure pc alled with the list of values lv ofits arguments omputes a value v. The memory at the end of the evaluationin C is m′.
Gppc ⊢ r, m 99K r′, m′ states that in the global environment Gppc, the evaluationin PPC of the urrent funtion updates the set of registers r into r′ and thememory m into m′.
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Memory management operations:allo : Tmem → Tblock → Tblock → option (Tmem ∗ Tblock)free : Tmem → Tblock → option (Tmem)load : Tchunk → Tmem → Tblock → Tofs → option (Tvalue)store : Tchunk → Tmem → Tblock → Tofs → Tvalue → option (Tmem)Relation between bloks and memory hunks:in bounds : Tchunk → Tofs → Tblock → Tblock → PropSome properties of memory management operations:Axiom loaded blok is valid:

∀ (hunk : Thunk) (m: Tmem) (b: Tblok) (ofs: Tofs) (v :Tvalue),load hunk m b ofs = Some v ⇒valid data blok m b.Axiom loaded blok is in bounds:
∀ (hunk : Thunk) (m: Tmem) (b: Tblok) (ofs: Tofs) (v : Tvalue),load hunk m b ofs = Some v ⇒in bounds hunk ofs (m.memdata)(b).low (m.memdata)(b).high.Axiom valid blok store:
∀ (hunk : Thunk) (m1 m2 : Tmem) (b b' : Tblock) (ofs: Tofs) (v : Tvalue),store hunk m1 b' ofs v = Some m2 ∧valid data blok m1 b ⇒valid data blok m2 b.Axiom store agree:
∀ (hunk : Tchunk) (m1 m2 m1' m2' : Tmem) (b b' : Tblock)(lo hi : Tblok) (ofs: Tofs) (v : Tvalue),blok agree b lo hi m1 m2 ∧store hunk m1 b' ofs v = Some m1' ∧store hunk m2 b' ofs v = Some m2' ⇒blok agree b lo hi m1' m2'.Axiom load extends:
∀ (hunk : Tchunk) (m1 m2 : Tmem) (b: Tblock) (ofs: Tofs) (v : Tvalue),extends m1 m2 ∧load hunk m1 b ofs = Some v ⇒load hunk m2 b ofs = Some v.Fig. 3. Abstrat spei�ation of the memory management.



10 Sandrine Blazy, Xavier LeroyThese semantis rely on the memory management operations. For instane,in the dynami semantis of PPC, referenes to variables orrespond to expliitloads and stores. There are 13 load instrutions and 10 store instrutions inPPC. In the dynami semantis of C:� A blok of memory is alloated for eah delared variable. The ells of theblok that stores an array onsist of the elements of the array.� Suh a blok is dealloated at the end of the sope of the variable.� The evaluation of a left value loads a value from memory.� The exeution of any assignment statement is based on the load and storeoperations.Memory Layout Figure 4 de�nes the types that were left unspei�ed in the ab-strat spei�ation in �gure 1. The bloks and the o�sets of a blok are identi�edby integers. The sizes of stored values are one, two, four and eight bytes. Valuesare either unde�ned values, or integers or �oats or non null pointer values. Theunde�ned value Vundef is a junk value that represents the value of uninitialisedvariables. A value of type pointer is either the integer 0 (that represents theNULL pointer) or a pair of a blok identi�er (that is, the address of the �rst ellof the blok) and an o�set between the blok and the ell the pointer points to.This representation of pointers is adapted to C pointer arithmeti. For instane,the expression (Vptr b ofs) + (Vint i) evaluates to the pointer value (Vptrb Vint (ofs + i)) if this evaluation does not fail. In other words, the onlyintegers i that an be added to a pointer value are those suh that (ofs + i)is in the bounds of the blok b. Another example is the omparison betweenpointers: two pointers that are not NULL may be ompared only if they point toa same blok.Addresses:
Tblock ::= Z

Tofs ::= ZValues:
Tcelldata ::= Tsize ∗ Tvalue a data ell is a pair of a size and a value
Tsize ::= {1, 2, 4, 8} number of bytes of a ell
Tvalue ::= Vint Tinteger integer

| Vfloat T�oat �oat
| Vptr Tblock Tofs pointer (a blok and an o�set)
| Vundef unde�ned valueFig. 4. An implementation of the memory layout.Usually, properties of memory layouts are lassi�ed into separation, adjaenyand ontainment properties [26℄. This is also the kind of properties of our memory



Formal Veri�ation of a Memory Model for C -Like Imperative Languages 11model. Separation and adjaeny of memory bloks are valid in our model byonstrution. By onstrution, eah memory blok belongs to only one memoryarea. Two di�erent bloks are also separated by onstrution sine a ell of ablok an not be aessed from another blok. The ontainment property we useis the extends relation.Memory Management The memory hunks that were left unspei�ed in �g-ure 3 are implemented in �gure 5 in the following way: integers are stored oneither one, two or four bytes, and �oats are stored on either four or eight bytes.Integers that are stored on one or two bytes are either signed or unsigned. Pointervalues are implemented by integers stored on four bytes.The allo and free funtions never fail. The alloation method is linear. loadhunk m b ofs fails when b does not identify a blok of the data area of m andwhen the property in bounds hunk ofs b is not true. The load funtion allsthe load result funtion in order to load eah ell that needs to be loaded in theblok b from the o�set ofs. The load result funtion fethes a value in memoryand asts this value to a value of a type de�ned by a memory hunk, when thememory hunk is ompatible with the value. Memory hunks determine also if ablok needs to be �lled with digits. For instane, when an integer that is storedon one or two bytes is loaded, it is automatially extended to four bytes (by thefuntion alled load result), either by adding zeroes if the integer is unsigned, orby repliating the sign bit if the integer is signed (see the funtion ast1signedalled by load result). The load result funtion fails if the memory hunk is notompatible with the value, for instane if it attempts to load a �oat value whenthe memory hunk orresponds to an integer. For spae reasons, the de�nitionof this funtion is not fully detailed in �gure 5.Some new properties of the operations that manage the memory are de�nedin the implementation. They have not been de�ned in the abstrat spei�ationbeause they rely on the implementation of the memory management operations.These properties express that the memory bloks remember orretly the storedvalues. More preisely:1. If an operation updates a blok of a memory area by storing a value in it,then the ontent of this blok beomes this value,2. and the other bloks of memory are not modi�ed.3. A blok whih is modi�ed by an operation belongs to the memory that resultsfrom the modi�ation.These properties are often alled the good variable properties [25℄. Our erti�-ation uses them in order to prove analogous properties on stak frames builtby the ompiler. As these properties are related to memory bloks onsisting ofmemory ells, their proof relies on analogous properties for memory ells.Figure 6 spei�es some of the good variable properties. In the two theoremsalled load store same and load store other, a value v is stored in a memory m1at the o�set ofs1 of a blok b1, given a memory hunk alled hunk. The resultingmemory is alled m2. The �rst theorem alled load store same states that v is



12 Sandrine Blazy, Xavier LeroyMemory hunks:
Tchunk ::= Mint1signed signed integer stored on one byte

| Mint1unsigned unsigned integer stored on one byte
| Mint2signed signed integer stored one on two bytes
| Mint2unsigned unsigned integer stored on two bytes
| Mint4 integer stored on four bytes
| Mfloat4 �oat stored on four bytes
| Mfloat8 �oat stored on eight bytesMemory management operations:De�nition size hunk (hunk : Thunk) := . . .(* number of bytes orresponding to hunk, e.g. 4 for Mint4 *)De�nition in bounds (hunk : Thunk) (ofs: Tofs) (lo hi : Tblok) :=lo ≤ ofs ∧ ofs + size hunk hunk ≤ hi.De�nition load result (hunk : Thunk) (v : Tvalue) :=math hunk, v with| Mint1signed, Vint n : Some (Vint (ast1signed n))(* values are asted in order to �t the memory hunks *)| . . .| Mint4, Vptr b ofs : Some (Vptr b ofs)| M�oat4, V�oat f : Some (V�oat (singleo�oat f ))| . . .| , : None(* erroneous ases, e.g. an integer hunk suh as Mint4 and a �oat value *)end.De�nition load (hunk : Thunk) (m: Tmem) (b: Tblok) (ofs: Tofs) :if valid data blok m b ∧ in bounds hunk ofs m(b).low m(b).highthen load result hunk . . .(* the seond parameter is the value that is found in ell b at o�set ofs *)else None. Fig. 5. An implementation of the memory management.also the value that is loaded in m2 at the address where it has been stored. Theseond theorem alled load store other states that the store operation of v (in ablok b1 at the o�set ofs1 ) does not hange any other value of the memory, i.e.any other value that is fethed either in another blok b2 or in the same blok b1but at another valid o�set ofs2. An o�set is valid in a blok if there are enoughremaining ells in the blok in order to store a value form this o�set.Other properties are related to the high and low bounds of memory bloks.They express the ompatibility between the bounds of a blok and the o�setfrom where a value is stored or loaded in that blok. For instane, the theoremlow bound store of �gure 7 states that if a value v is stored in a memory m1,then the resulting memory m2 has the same low bound as m1. Finally, a fewother relations between the memory management operations. For instane, the



Formal Veri�ation of a Memory Model for C -Like Imperative Languages 13Theorem load store same:
∀ (hunk : Thunk) (m1 m2 : Tmem) (b1 : Tblok) (ofs1 : Tofs) (v : Tvalue),store hunk m1 b1 ofs1 v = Some m2 ⇒load hunk m2 b1 ofs1 = Some (load result hunk v).Theorem load store other:
∀ (hunk1 hunk2 : Thunk) (m1 m2 : Tmem) (b1 b2 : Tblok)(ofs1 ofs2 : Tofs) (v : Tvalue),store hunk1 m1 b1 ofs1 v = Some m2 ∧(b1 6= b2 ∨ ofs2 + size hunk hunk2 ≤ ofs1 ∨ ofs1 + size hunk hunk1 ≤ ofs2 )

⇒ load hunk2 m2 b2 ofs2 = load hunk2 m1 b2 ofs2.Fig. 6. Some good-variable propertiestheorem alled store allo states that a value may be stored from a given o�setin a newly alloated blok if the memory hunk and the o�set are ompatiblewith the bounds of this blok.Theorem low bound store:
∀ (hunk : Thunk) (m1 m2 : Tmem) (b b' : Tblok) (ofs: Tofs) (v : Tvalue),store hunk m1 b ofs v = Some m2 ⇒(m2.memdata)(b').low = (m1.memdata)(b').low.Theorem store allo:
∀ (hunk : Thunk) (m1 m2 : Tmem) (b lo hi : Tblok) (ofs: Tofs) (v : Tvalue),allo m1 lo hi = Some (m2, b) ∧in bounds hunk ofs lo hi ⇒

∃ m3 | store hunk m2 b ofs v = Some m3.Fig. 7. Other properties of memory management operations3.3 Implementation of a Finite MemoryThe exeution of a soure program may exeed the memory of the target ma-hine. Thus, we have implemented another memory model where the size ofmemory ells and the number of bloks in eah memory area are �nite. Theonly di�erene with the previous model relies in the implementation of the allooperation: the alloation of a blok fails if there is no free ell left. Thus, the the-orems suh as store allo that are de�ned in the �rst implementation still holdin this seond implementation. When the alloation does not fail, it behaves asthe alloation of the in�nite memory. This is shown in �gure 8. The theoremallo �nite to in�nite results from the de�nition of both alloation operations.The ompilation of a program fails as soon as an alloation fails. As eah stepof the ompilation proess alloates memory bloks, there are many opportunitiesfor the ompiler to fail. In the memory that stores data, the evolution of blok



14 Sandrine Blazy, Xavier LeroyAbstrat speifiation:allo : Tmem → Tofs → Tofs → option (Tmem ∗ Tblock)Two implementations:De�nition allo1 (m:Tmem) (lo hi : Tblok) :=Some . . . (* never fails *)De�nition allo2 (m:Tmem) (lo hi : Tblok) :=if (* no free ell left *) then Noneelse allo1 m lo hi.Theorem allo �nite to in�nite:
∀ (m1 m2 : Tmem) (b lo hi : Tblok),allo2 m1 lo hi = Some (m2, b) ⇒ allo1 m1 lo hi = Some (m2, b).Fig. 8. Reuse of the alloation operationalloation during the ompilation proess is the following. For eah instane ofa alled proedure:� The dynami semantis of C alloates a blok for eah delared variable.� The translation from C to the �rst intermediate language L1 of the om-piler alloates a single blok for all the loal variables of the proedure thatare either of array type or whose addresses are taken. Thus the number ofalloated bloks dereases but the size of eah blok inreases.In the ase of the translation from C to L1, the size of all alloated bloks inthe data area is the same in the semantis of C and L1. In other translations fromone intermediate language Li to another intermediate language Lj, the numberof alloated bloks inreases slightly. The translation alloates indeed the bloksthat orrespond to the bloks of Li but also other bloks that are built by thetranslation of long expressions made up of several variables and funtion alls.Conerning the memory area that stores ode, eah translation of the om-pilation proess omputes information that need to be stored in memory. At theend of the proess, all the information have been omputed and the target odemay be emitted. If for instane a translation from one intermediate language

Li to another intermediate language Lj ours, the semantis of Li alloatesas many bloks as the dynami semantis of Lj. However, the bloks alloatedby the dynami semantis of Lj are beoming bigger. For instane, the returnaddress of a alled proedure is only known (and stored) at the end of the om-pilation proess. As the translations do not preserve the ontents of memorybloks, they may fail beause they translate bloks into bigger bloks. Thus:� During the ompilation proess, any translation fails when it translates ablok into a bigger blok.� The exeution of a translated program may fail, although the exeution ofthe program does not fail.



Formal Veri�ation of a Memory Model for C -Like Imperative Languages 15With suh a �nite memory model, we prove the following orretness resultfor eah translation: if the translation of a program does not fail, if that programterminates on some �nal memory state, and if the translated program also ter-minates, then it terminates on the same memory state. This property is weakerthan the property we prove for an in�nite memory model.Instead of de�ning a more preise memory model, we intend to performa stati analysis that will trak the amount of alloated memory for a givenompilable program and ompute an approximation of this amount if the ontrol�ow graph of the program is ayli. We will then have to prove an equivaleneresult between the exeution of the program and its exeution in a stak disiplinelanguage where only one blok is alloated. This will require the de�nition ofsuh a language and the proof of semanti equivalene between this languageand the orresponding language of the ompiler.4 From Formal Spei�ations to CodeThis setion gives an overview of the arhiteture of the Coq development. Fig-ures 9 and 10 show the Coq modules that have been built in order to formallyverify the memory model. OCaml modules have been automatially generatedfrom them. The generated modules have the same arhiteture as the Coq mod-ules. The Coq extration mehanism removes the axioms and theorems, andmore generally the terms of type Prop.The abstrat spei�ation onsists of the three signature modules of �g-ure 9. They are delared with the keyword Module Type. The module alledMEM PARAMS ollets the parameters of the memory model. These are Coqvariables of type Set that Coq uses to type abstrat spei�ations. They de�nethe ontents and the addressing of memory ells and are left abstrat in the signa-ture modules. The module alled MEM LAYOUT spei�es the memory layout.It de�nes the funtions and axioms that are detailed in �gures 1 and 2. Thesede�nitions refer to unspei�ed types (e.g. Tblok) that are delared in a modulealled MemP of type MEM PARAMS. The module alled MEM OPS spei�esthe memory management operations. It de�nes the funtions and axioms thatare detailed in �gure 3.The �gure 10 shows the modules that implement the signaturemodules. For instane, the module MEM PARAMS IMPL implementsthe module MEM PARAMS (see �gures 4 and 5). The module alledMAKE MEM LAYOUT is the funtor that builds a module of typeMEM LAYOUT from a module of type MEM PARAMS. All axioms thathave been de�ned in the signature modules are proved in the implementationmodules (thus beoming theorems). For instane, �gure 10 shows the proofsript of the theorem alled valid not valid di�. This is a very simple proofsript that onsists of a few Coq tatis. In this example, the proof sriptunfolds the de�nitions and prove by ontradition that b an not be equal to b'.More generally, these tatis an be user de�ned and orrespond to the steps



16 Sandrine Blazy, Xavier LeroyModule Type MEM PARAMS.Parameters Thunk,Tofs,Tell, Tvalue: Set.
. . .End MEM PARAMS.Module Type MEM LAYOUT.Delare Module MemP : MEM PARAMS.Reord Tblokdata := {high: Tblok ; low : Tblok ; ontents: Map (Tblok, Tell)}.
. . .Reord Tmem := {memdata: Map (Tblok, Tblokdata); . . . }.De�nition valid data blok (m:Tmem)(b:Tblok) := ∃ v, m.memdata(b) = Some v.Axiom valid not valid di�:

∀ m b b', valid data blok m b ∧ ¬(valid data blok m b') ⇒ b 6= b'.End MEM LAYOUT.Module Type MEM OPS.Delare Module MemP : MEM PARAMS.Delare Module MemL: MEM LAYOUT.Parameter load: Thunk → Tmem → Tblok → Tofs → option Tvalue.
. . .Axiom loaded blok is valid:

∀ hunk m b ofs v, load hunk m b ofs = Some v ⇒ valid data blok m b.
. . .End MEM OPS.Fig. 9. Arhiteture of the spei�ation (signature modules)that would be used in a hand proof. They are reused to prove interatively thetheorems.Our memory model onsists of several thousands lines of Coq spei�ationsand proofs. The ompilable OCaml modules that have been automatially ex-trated from the Coq spei�ations implement the operations that manage thememory.5 Related WorkSeveral low-level memory models (often alled arhiteture-entri models) havebeen de�ned. They are dediated to hardware arhitetures and study the impatof features suh as write bu�ers or ahes, espeially in multiproessor systems.For instane, [22℄ uses a term rewriting system to de�ne a memory model thatdeomposes load and store operations into �ner-grain operations. This modelformalises the notions of data repliation and instrution reordering. It aims asde�ning the legal behaviours of a distributed shared-memory system that relieson exeution trae of memory aesses. These memory models are lower-level
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Module MAKE MEM LAYOUT (P : MEM PARAMS)<: MEM LAYOUT with Module MemP := P.

. . .Theorem valid not valid di�:
∀ m b b', valid data blok m b ∧ ¬(valid data blok m b') ⇒ b 6= b'.Proof. intros; red ; intros; subst b; ontradition. Qed.End MAKE MEM LAYOUT.Module MEM PARAMS IMPL <: MEM PARAMS.De�nition Tblok := Z .Indutive Thunk := Mint1signed | Mint1unsigned | . . .

. . .End MEM PARAMS IMPL.Module MEM LAYOUT IMPL <: MEM LAYOUT :=MAKE MEM LAYOUT MEM PARAMS IMPL.Module MEM OPS IMPL <: MEM OPS.Module MemP := MEM PARAMS IMPL.Module MemL := MEM LAYOUT IMPL.De�nition load (hunk : Thunk) (m: Tmem) (b:Tblok) (ofs: Tofs) : option Tvalue:= . . .Theorem loaded blok is valid: ∀ hunk m b ofs v,load hunk m b ofs = Some v ⇒ valid data blok m b.Proof. . . . Qed.Theorem load store same: ∀ hunk m1 m2 b1 ofs1 v,store hunk m1 b1 ofs1 v = Some m2 ⇒load hunk m2 b1 ofs1 = Some (load result hunk v).Proof. . . . Qed.End MEM OPS IMPL.Fig. 10. Arhiteture of the spei�ation (implementation modules)



18 Sandrine Blazy, Xavier Leroythan ours (thus relying on a very di�erent representation of memory) and arenot dediated to C -like languages.Other researh has onentrated on the formalisation of properties of pro-grams that manipulate reursive data strutures de�ned by pointers. New logisthat apture ommon storage invariants have also been de�ned in order to fa-ilitate and automate the proof of properties about pointers. These logis arebased on separation logi [5℄, an extension of Hoare logi where assertions mayrefer to pointer expressions in a more onise and meaningful way. Two operatorsfailitate the expression of memory properties in separation logi: a separativeonjuntion allows one to express the separation of one piee of memory withrespet to another, a separating impliation allows one to introdue hypothesesabout the memory layout. The de�nition of a re�nement alulus for the sep-aration logi is urrently investigated [16℄. In the near future, separation logishould be implemented, as is Hoare logi in tools dediated to the B method.Some ideas of separation logi have been formalised in Isabelle/HOL in orderto verify the orretness of Java programs with pointers [15℄. [9℄ presents atool for formally proving that a C program is free of null pointer derefereningand out-of-bounds array aess. Some of our properties of memory managementoperations are also stated in [15℄ and [9℄.Another way to prove properties about programs involving pointers is to de-�ne type systems that enable ompilers to detet errors in programs. Some typesystems are dediated to a spei� part of a ompiler (e.g. assembly ode [8℄).Type systems for memory management have been applied for low-level mem-ory management [24℄. For instane, typed region systems where eah memoryloation has an intended type and an atual type, have been de�ned to verifygarbage olletors.Muh work has been done on verifying the omplete orretness of a ompiler.[11℄ and [3℄ use re�nement as a ompilation model. In the former, a re�nementalulus is de�ned to support the ompilation of programs written in an idealisedhigh-level language into the .NET assembler. The aim of this work is to re�nethe whole ompilation proess and this approah is not automated by tools.The latter uses a term rewriting system to redue programs into normal formsrepresenting target programs.The translation validation approah [18, 19, 10, 20, 21℄ aims at validating ev-ery run of the ompiler, produing a formal proof that the produed target odeis a orret implementation of the soure ode. This approah is based on pro-gram heking and on stati analysis. It has been applied a lot for validating avariety of ompiler optimizations, with a reent fous on loop transformations[27℄. In the proof arrying ode approah [17, 2, 12℄, the ompiler is rewrittenin a ertifying ompiler that produes both a ompiled ode and a proof termof some properties (alled safety rules) to verify, that have been added in thesoure program. Safety rules are written in �rst-order prediate logi extendedwith prediates for type safety and low-level memory safety. Many speialisedtype systems have been used in this approah tat has been extensively appliedto Java byteode erti�ation.



Formal Veri�ation of a Memory Model for C -Like Imperative Languages 19Our work belongs to a projet that investigates the feasibility of formallyverifying the orretness of a C -like ompiler itself. The goal is to write theompiler diretly in the Coq spei�ation language. Other projets that developmahine-heked proofs of ompiler orretness fous on data �ow analyses andother ompiler transformations [6, 23℄. They do not require a memory model aspreise as ours.6 ConlusionThis paper has presented a formalisation and a veri�ation in Coq of a memorymodel for C -like languages. Thanks to the use of Coq modules, this formalisa-tion has been spei�ed at two levels of abstration. Two onrete spei�ationshave been implemented from an abstrat spei�ation. They desribe an in�nitememory and a �nite memory. Both memory models have a similar behaviour ex-ept in the ase of failure of the alloation of memory bloks. A signi�ant partof the spei�ations and orretness proofs have been fatored out through theuse of modules. The memory model has been implemented as part of an ongoingerti�ation of a moderately-optimising C ompiler. This ompiler relies on 7di�erent languages whose formal semantis refer to the memory model, and ontransformations that require extensive reasoning over the memory model. Manyproperties have been proved and erti�ed programs have been synthesised fromthe formalisation.A limitation of our ompiler is that the orretness proofs of the transforma-tions use simulation lemmas that apply only when every statement of the soureode is mapped to zero, one or several statements of the transformed ode. Thisis not su�ient to prove the orretness of more sophistiated optimisations suhas ode motion, lifting of loop-invariant omputations or instrution sheduling,where omputations our in a di�erent order in the soure and transformedode. Beause of this limitation, we envision to de�ne a notion of equivalenebetween memory states and to perform these optimisations on a higher-levelintermediate language, whose big-step semantis make it easier to reorder om-putations without worrying about intermediate omputational states that arenot equivalent.Another urrent fous is the formalisation of non-terminating programs. Thelanguages of our ompiler are de�ned by big-step semantis that hide non-termination of programs. Our orretness proof states that any soure programthat terminates on some �nal memory state is ompiled into a program thatalso terminates, produes the same memory state and alls the same funtionsin the same ontexts. Previous experiments in the writing of small-step seman-tis showed us that they are not adapted for proving on mahine properties suhas semanti equivalene between languages. We intend to de�ne semantis thatollet more information than big-step semantis but that are not as onrete assmall-step semantis.
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