
Formal Veri�
ation of a Memory Modelfor C -Like Imperative LanguagesSandrine Blazy and Xavier LeroyINRIA Ro
quen
ourt78 153 Le Chesnay
edex, Fran
e{Sandrine.Blazy, Xavier.Leroy}�inria.frAbstra
t. This paper presents a formal veri�
ation with the Coq proofassistant of a memory model for C -like imperative languages. This modelde�nes the memory layout and the operations that manage the mem-ory. The model has been spe
i�ed at two levels of abstra
tion and im-plemented as part of an ongoing
erti�
ation in Coq of a moderately-optimising C
ompiler. Many properties of the memory have been ver-i�ed in the spe
i�
ation. They fa
ilitate the de�nition of pre
ise formalsemanti
s of C pointers. A
erti�ed OCaml
ode implementing the mem-ory model has been automati
ally extra
ted from the spe
i�
ations.1 Introdu
tionFormal veri�
ation of
omputer programs � be it by model
he
king, programproof, stati
 analysis, or any other means � obviously requires that the semanti
sof the programming language in whi
h the program is written be formalized ina way that is exploitable by the veri�
ation tools used. In the
ase of programproofs, these formal semanti
s are often presented as operational semanti
s orspe
ialized logi
s su
h as Hoare logi
. The need for formal semanti
s is evenhigher when the program being veri�ed itself operates over programs:
ompilers,program analyzers, et
. In the
ase of a
ompiler, for instan
e, no less thanthree formal semanti
s are required: one for the implementation language of the
ompiler, one for the sour
e language, and one for the target language. Moregenerally speaking, formal semanti
s �on ma
hine� (that is, presented in a formthat
an be exploited by veri�
ation tools) are an important aspe
t of formalmethods.Formal semanti
s are relatively straightforward in the
ase of de
larative pro-gramming languages su
h as pure fun
tional or logi
 languages. Many programsthat require formal veri�
ation are written in imperative languages, however.These languages feature assignments to variables and in-pla
e modi�
ation ofdata stru
tures. Giving semanti
s to these imperative
onstru
ts requires thedevelopment of an adequate memory model, that is, a formal des
ription of thememory layout and the operations over it. The memory model is often one of themost deli
ate parts of a formal semanti
s for an imperative programming lan-guage: an ex
essively
on
rete memory model (e.g. representing the memory as a

2 Sandrine Blazy, Xavier Leroysingle array of bytes)
an fail to validate algebrai
 laws over loads and stores thatare a
tually valid in the programming language and thus make program proofsmore di�
ult; an ex
essively abstra
t memory model
an fail to a

ount for e.g.aliasing or partial overlap between memory areas, thus
ausing the semanti
s tobe in
orre
t.This paper reports on the design, formalization and veri�
ation, using theCoq proof assistant, of a memory model for C -like imperative languages. Inaddition to being widely used for programming safety-
riti
al software, C andrelated languages are
hallenging from the standpoint of the memory model,be
ause they feature both pointers and pointer arithmeti
, on the one hand, andisolation and freshness guarantees on the other. For instan
e, pointer arithmeti

an result in aliasing or partial overlap between the memory areas referen
ed bytwo pointers; yet, it is guaranteed that the memory areas
orresponding to twodistin
t variables or two su

essive
alls to mallo
 are disjoint. This stands in
ontrast with both higher-level imperative languages su
h as Java, where twodistin
t referen
es always refer to disjoint data, and lower-level languages su
has ma
hine
ode, where unrestri
ted address arithmeti
 invalidates all isolationguarantees.The memory model presented here is used in the formal veri�
ation of amoderately-optimising
ompiler that translates a large subset of the C pro-gramming language down to PowerPC assembly
ode [13℄. The memory modelis used by the formal semanti
s of all languages manipulated by the
ompiler:the sour
e language (large subset of C), the target language (subset of PowerPCassembly), and 5 intermediate languages that bridge the semanti
 gap betweensour
e and target. Certain passes of the
ompiler perform non-trivial transfor-mations on memory allo
ations and a

esses: for instan
e, the auto variables ofa C fun
tion, initially mapped to individually-allo
ated memory blo
ks, are atsome point mapped to sub-blo
ks of a single sta
k-allo
ated a
tivation re
ord,whi
h at a later point is extended to make room for storing spilled temporaries.Proving the
orre
tness (semanti
 preservation) of these transformations requireextensive reasoning over the memory model, using the properties of this modelgiven further in the paper.The remainder of this paper is organized as follows. Se
tion 2 presents howwe have formally veri�ed a
ompiler with the Coq proof assistant. Se
tion 3des
ribes the formal veri�
ation of our memory model. Se
tion 4 explains howOCaml
ode has been automati
ally generated from this veri�
ation. Se
tion 5dis
usses related work. Finally, se
tion 6
on
ludes.2 Certi�
ation of a C -like CompilerThe formal veri�
ation of a
ompiler is the formal proof of the following equiva-len
e result: any sour
e program that terminates on some �nal memory state is
ompiled into a program that also terminates and produ
es the same memorystate. Usually, su
h an equivalen
e result relies on a more general notion of equiv-alen
e between memory states. But, our memory model aims at fa
ilitating this

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 3
orre
tness proof and it is designed in su
h a way that the memory states are thesame at the end of the exe
ution of sour
e and
ompiled programs. The
orre
t-ness result is not proved dire
tly but in several steps. Ea
h step
orresponds to atransformation (that is, either a translation or an optimisation) a
hieved by the
ompiler. Ea
h
orre
tness proof of a transformation pro
eeds by indu
tion onthe exe
ution of the original program using a simulation lemma: if the originalprogram exe
utes one statement, the transformed program exe
utes zero, one orseveral statements.Our
ompiler treats a large subset of C. It
ompiles any C program in whi
hjump statements (i.e. goto, setjmp and longjmp) are not allowed, and fun
tionshave a �xed number of arguments. The expression evaluation order is de�nedin the
ompiler: expressions are evaluated from left to right, thus leaving lessfreedom to the
ompiler. Furthermore, as dynami
 allo
ation of variables is doneexpli
itly in C by
alling the library fun
tions mallo
 and free, the semanti
sof these fun
tions is not de�ned in our formal semanti
s and there is no garbage
olle
tor in the
ompiler. The proof that these fun
tions ensure la
k of danglingpointers is thus out of the s
ope of this paper.The formal veri�
ation of the memory model belongs to an ongoing formalveri�
ation with the Coq proof assistant of this
ompiler, and it
onsists of:� a formal spe
i�
ation at several levels of abstra
tion a memory model,� a formal proof about many properties of this memory model,� the automati
 generation from the spe
i�
ation of a
erti�ed
ode that ver-i�es the same properties as the formal spe
i�
ation.The Coq proof assistant [1, 4℄
onsists mainly of a language
alled Gallina forwriting formal spe
i�
ations and a language for developing mathemati
al proofsto verify some properties on the formal spe
i�
ations. Gallina relies on the Cal-
ulus of Indu
tive Constru
tions, a higher-order typed λ−
al
ulus with depen-dent types and
apabilities for indu
tive de�nitions. Proving a simple property
onsists in writing intera
tively proof
ommands that are
alled ta
ti
s. Ta
ti
smay also
onsist of user-de�ned ta
ti
s, thus making it possible to de
ompose aproperty into simpler reasoning steps and to reuse proof s
ripts.Coq provides a way to stru
ture spe
i�
ations in large units
alled modules.The Coq module system [7℄ reuses the main features of the OCaml module sys-tem. A module is a
olle
tion of de�nitions of types, values and modules. It
onsists of two parts: a signature and an implementation. The signature of amodule is an abstra
t spe
i�
ation of the
omponents that must o

ur in allpossible implementations of that module. The type of a module is its signature.Modules
an be parametrised by modules. Parametrised modules are
alled fun
-tors (i.e. fun
tions from modules to modules). One way to build modules is toapply a fun
tor. The other way is to build it de�nition by de�nition. A modulemay be asso
iated with a signature to verify that the de�nitions of the mod-ule are
ompatible with the signature. Properties may be de�ned in modules.When a property is de�ned in the signature of a module, it must be proved inany implementation of this module. The property is thus
alled an axiom (resp.theorem) in the signature (resp. implementation) of the module.

4 Sandrine Blazy, Xavier LeroyCoq provides also an automated me
hanism for extra
ting fun
tional pro-grams from spe
i�
ations [14℄. The extra
tion from a Coq fun
tion or proofremoves all logi
al statements (i.e. predi
ates) and translates the remaining
on-tent to a program written in OCaml. As the extra
ted program veri�es the sameproperties as the Coq spe
i�
ation, the extra
ted
ode is
alled the
erti�ed
ode.The Coq extra
tion me
hanism handles the module system: Coq modules are ex-tra
ted to OCaml modules, Coq signatures are extra
ted to OCaml signatures,and Coq fun
tors are extra
ted to OCaml fun
tors.3 Formal Spe
i�
ationThis se
tion des
ribes the formal veri�
ation in Coq of our memory model. Itspe
i�es the memory layout and the operations that manage the memory. Thisformal spe
i�
ation is written at two levels of abstra
tion:� The abstra
t spe
i�
ation is suitable for most of imperative languages. Itde�nes a general memory model, parametrised by some
hara
teristi
s ofthe language it applies to (e.g. the values of the language), and propertiesthat need to be veri�ed by a more
on
rete spe
i�
ation.� The
on
rete spe
i�
ation is devoted to C -like languages with pointer arith-meti
. It implements the operations de�ned in the abstra
t spe
i�
ation,and proves that they satisfy the abstra
t spe
i�
ation. The properties thathave been stated in the abstra
t spe
i�
ation are proved in the
on
retespe
i�
ation. Other properties are also stated (and proved) in the
on
retespe
i�
ation.This se
tion presents two
on
rete spe
i�
ations. The �rst one is devoted to anin�nite memory model of a C
ompiler. The se
ond one de�nes a �nite memorymodel that
orresponds to the �rst
on
rete spe
i�
ation. In this paper, wewill use familiar mathemati
al notation to present our development in Coq. Forinstan
e, indu
tive de�nitions will be presented in BNF format and Coq arrowswill be repla
ed by either
onjun
tions or impli
ations.3.1 Abstra
t Spe
i�
ationThe abstra
t spe
i�
ation de�nes the memory layout in terms of re
ords andmaps. Several types are left unspe
i�ed. The operations that manage the memoryare only de�ned by their types. Some axioms are also de�ned in the abstra
tspe
i�
ation.Memory Layout Figure 1 des
ribes the types that spe
ify the memory layout.The memory is separated into four areas that do not overlap:� the free memory
alled memfree that
an be allo
ated during the exe
utionof a program,

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 5� the null memory
alled memnull that is not a

essible during the exe
utionof a program,� the memory
alled memdata that stores data,� the memory
alled memcode that stores
ode, i.e. the pro
edures of a pro-gram. 1The type of memory is
alled Tmem. It is a re
ord whose four �elds repre-sent the four areas. Ea
h area is represented by a map (that is, a partial �nitefun
tion) of type Tmemi from blo
ks identi�ers Tblo
k to blo
ks Tblock i, where
i denotes a memory area. Tblo
k is an ordered type and ≤ denotes an orderrelation on Tblo
k. A blo
k
onsists of a low bound, a high bound and a mapfrom o�sets Tofs (i.e.
ells identi�ers) to memory
ells Tcell i. Tcell i is equippedwith a
omparison relation that we write =. The high and low bounds of a blo
kare blo
k identi�ers. The
ontents of the
ells in a blo
k depend on the area theblo
k belongs to. Usually, ea
h
ell of the data area stores a value on a givennumber of bytes. Ea
h
ell of the
ode area stores a pro
edure (i.e. a C fun
-tion). Ea
h
ell of the null area stores either a deallo
ated
ell or a null
ell thathas never been deallo
ated.The types that are left unspe
i�ed in the abstra
t spe
i�
ation are related tothe way blo
ks and
ells are addressed (
f. Tblo
k and Tofs) and to the
ontentsof memory
ells (
f. Tcelli , ∀i ∈ {data, free, null} and Tpro
edure). The fourareas of the memory are handled in a similar way. For spa
e reasons, this paperfo
uses on the memory area that stores data.Memory layout:

Tmem ::= {memdata := Tmemdata

;memfree := Tmemfree

;memnull := Tmemnull

;memcode := Tmemcode }Memory areas:
∀i ∈ {data, free, null, code}, Tmemi ::= Map (Tblock ,Tblock i)Memory blo
ks:
∀i ∈ {data, free, null}, Tblock i ::= {high := Tblock

; low := Tblock

; contents := Map (Tofs,Tcelli) }
Tblock code ::= TprocedureFig. 1. Abstra
t spe
i�
ation of the memory layout: type de�nitions.1 In the sequel of this paper, we use the word pro
edure to denote a C fun
tion. Theword fun
tion is reserved to Coq mathemati
al fun
tions that are de�ned in thespe
i�
ation.

6 Sandrine Blazy, Xavier LeroyFigure 2 de�nes some relations between blo
ks and memory and some of theirproperties. The relation
alled valid data blo
k states that a blo
k b is valid withrespe
t to a memory m if it has been allo
ated in the area of m that stores data(i.e. it belongs to the domain of the mapm.memdata.). This relation is often usedas a pre
ondition in the operations that manage the memory (see for instan
ethe de�nition of load in �gure 5). The axiom
alled valid not valid di� statesthat any blo
k is either valid or not.The relation
alled blo
k agree is an agreement relation between blo
ks. Twoblo
ks belonging to two memories agree between two bounds
alled lo and hi ifthey share a same identi�er b and if ea
h of their
ells that is between the boundslo and hi, stores the same value. This relation is an equivalen
e relation: it veri�esthe three axioms
alled blo
k agree re�, blo
k agree sym and blo
k agree trans.The relation
alled extends states that a memory m2 extends another mem-ory m1 if ea
h valid blo
k b of m1 is also a blo
k of m2. More pre
isely, if bidenti�es a valid blo
k (m1.memdata)(b) of m1, then it identi�es also a biggerblo
k (m2.memdata)(b) of m2 (i.e. a blo
k su
h that its
ells are in
luded inthe
ells of (m2.memdata)(b)) and both blo
ks agree between the bounds of thesmallest blo
k m1(b). The pi
ture of �gure 2 shows an example of two su
hblo
ks. The
ompilation pro
ess relies on a run-time sta
k of memory blo
ks
alled sta
k frames. At the beginning of the
ompilation pro
ess of a program,a sta
k frame is allo
ated for ea
h instan
e of a
alled pro
edure. Informationthat are
omputed in further steps of the
ompilation pro
ess are stored in sta
kframes and reused in further steps of the pro
ess. The relation
alled extends isuseful to spe
ify the extension of sta
k frames during the
ompilation pro
ess.Memory Management The main operations that manage the memory areallo
, free, load and store. They are spe
i�ed in the �gure 3, where allo
, load andstore are related to the memory area that stores data. Similar operations relatedto the memory area that stores
ode have also been spe
i�ed. Ea
h operationthat manage the memory may fail (e.g. allo
 may fail if there are no free
ellsleft). Thus, its results is of type option(τ). The values of su
h a type are eitherNone (when the operation fails) or Some(v) where v is of type τ .load and store operations are parametrised by memory
hunks. A memory
hunk indi
ates the size and the type of a

essed data. Its type is
alled T
hunkand is left unspe
i�ed in the abstra
t spe
i�
ation. Memory
hunks ensure thatea
h load operation follows a store operation that supplied the value retrievedby the load. For instan
e, when an operation su
h as (store
hunk1 m1 b ofs1= Some m2) is followed by an operation su
h as (load
hunk2 m b ofs2) thenthe load does not fail only if
hunk1,
hunk2, ofs1 and ofs2 are
ompatible.The fun
tionalities of the memory management operations are the following:� allo
 is the fun
tion that allo
ates a blo
k with given bounds. If it does notfail, this fun
tion yields a newly allo
ated blo
k and the modi�ed memory.� free is the fun
tion that deallo
ates a given blo
k of data.� load is the fun
tion that given a memory
hunk fet
hes the value stored in agiven blo
k of data.

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 7
De�nition valid data blo
k (m: Tmem) (b: Tblo
k) := b ∈ domain(m.memdata).Axiom valid not valid di�:

∀ (m: Tmem) (b b' : Tblo
k),valid data blo
k m b ∧ ¬(valid data blo
k m b') ⇒ b 6= b'.De�nition blo
k agree (b: Tblock) (lo hi : Tblo
k) (m1 m2 : Tmem) :=
∀ ofs ∈ [lo,hi ℄,((m1.memdata)(b).
ontents)(ofs) = ((m2.memdata)(b).
ontents)(ofs).Axiom blo
k agree re�:
∀ (m: Tmem) (b: Tblo
k) (lo hi : Tblo
k),blo
k agree b lo hi m m.Axiom blo
k agree sym:
∀ (m1 m2 : Tmem) (b: Tblock) (lo hi : Tblo
k),blo
k agree b lo hi m1 m2 ⇒blo
k agree b lo hi m2 m1.Axiom blo
k agree trans:
∀ (m1 m2 m3 : Tmem) (b: Tblock) (lo hi : Tblo
k),blo
k agree b lo hi m1 m2 ∧ blo
k agree b lo hi m2 m3 ⇒blo
k agree b lo hi m1 m3.De�nition extends (m1 m2 : Tmem) :=
∀ (b: Tblock),valid data blo
k m1 b ⇒(m2.memdata)(b).low ≤ (m1.memdata)(b).low ∧(m1.memdata)(b).high ≤ (m2.memdata)(b).high ∧blo
k agree b (m1.memdata)(b).low (m1.memdata)(b).high m1 m2

(m2.memdata) (b)

(m1.memdata) (b)

(m2.memdata) (b).high(m2.memdata) (b).low

(m1.memdata) (b).high

(m1.memdata) (b).lowFig. 2. Abstra
t spe
i�
ation of the memory layout: properties.

8 Sandrine Blazy, Xavier Leroy� store is the fun
tion that given a memory
hunk stores a value in a givenblo
k of data. The load (resp. store) fun
tion fails if the value to load (resp.store) is not
ompatible with the memory
hunk and the o�set (e.g. if thememory
hunk is to large). As these fun
tions are left unspe
i�ed at theabstra
t level, this property
onsists of axioms su
h as loaded blo
k is validand loaded blo
k is in bounds that will be proved on
e the fun
tions will bede�ned.The axiom
alled loaded blo
k is in bounds uses a property
alled in boundsthat de�nes when a value may be loaded from or stored in the two boundsof a blo
k. in bounds is used as a pre
ondition that triggers loads and storesin memory. As blo
k identi�ers and o�sets are left unspe
i�ed in the abstra
tspe
i�
ation, in bounds is also left unspe
i�ed. It is a relation, i.e. a fun
tionthat yields values of a type
alled Prop. This Coq type is used to de�ne logi
alpropositions.Other properties of the operations that manage the memory express that therelations between blo
ks are preserved by the memory management operations.For instan
e, the axiom
alled valid blo
k store expresses that the load operationdoes not invalidate valid blo
ks. More pre
isely, it states that if a value v isstored in a memorym1.memdata, any blo
k b that was valid before the operationremains valid after. The axiom
alled store agree states that the store operationpreserves the agreement relation. The axiom load extends states that the loadoperation preserves the extension relation. Figure 3 shows only some axioms ofthe spe
i�
ation. Similar axioms have been de�ned for all memory managementoperations.3.2 Implementation of an In�nite MemoryThis se
tion presents an implementation of our memory model that is devotedto a C-like
ompiler. The implementation of values and addresses is adapted toC pointer arithmeti
 and the implementation of memory
hunks follows the Carithmeti
 types. In this implementation, the memory is unlimited and thus theallo
ation never fails. New properties of the memory management are added inthis implementation.For ea
h language manipulated by our
ompiler, we have en
oded in Coqoperational semanti
s rules that detail how the memory is a

essed and modi�edduring the exe
ution of a program. For instan
e, the evaluation of a pro
edurerespe
ts the following judgements of the sour
e and target languages of the
ompiler (
alled respe
tively C and PPC):
Gc ⊢ pc, lv, m ⇒ v, m′ states that in the global environment Gc and the memory

m, the evaluation in C of the pro
edure pc
alled with the list of values lv ofits arguments
omputes a value v. The memory at the end of the evaluationin C is m′.
Gppc ⊢ r, m 99K r′, m′ states that in the global environment Gppc, the evaluationin PPC of the
urrent fun
tion updates the set of registers r into r′ and thememory m into m′.

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 9
Memory management operations:allo
 : Tmem → Tblock → Tblock → option (Tmem ∗ Tblock)free : Tmem → Tblock → option (Tmem)load : Tchunk → Tmem → Tblock → Tofs → option (Tvalue)store : Tchunk → Tmem → Tblock → Tofs → Tvalue → option (Tmem)Relation between blo
ks and memory
hunks:in bounds : Tchunk → Tofs → Tblock → Tblock → PropSome properties of memory management operations:Axiom loaded blo
k is valid:

∀ (
hunk : T
hunk) (m: Tmem) (b: Tblo
k) (ofs: Tofs) (v :Tvalue),load
hunk m b ofs = Some v ⇒valid data blo
k m b.Axiom loaded blo
k is in bounds:
∀ (
hunk : T
hunk) (m: Tmem) (b: Tblo
k) (ofs: Tofs) (v : Tvalue),load
hunk m b ofs = Some v ⇒in bounds
hunk ofs (m.memdata)(b).low (m.memdata)(b).high.Axiom valid blo
k store:
∀ (
hunk : T
hunk) (m1 m2 : Tmem) (b b' : Tblock) (ofs: Tofs) (v : Tvalue),store
hunk m1 b' ofs v = Some m2 ∧valid data blo
k m1 b ⇒valid data blo
k m2 b.Axiom store agree:
∀ (
hunk : Tchunk) (m1 m2 m1' m2' : Tmem) (b b' : Tblock)(lo hi : Tblo
k) (ofs: Tofs) (v : Tvalue),blo
k agree b lo hi m1 m2 ∧store
hunk m1 b' ofs v = Some m1' ∧store
hunk m2 b' ofs v = Some m2' ⇒blo
k agree b lo hi m1' m2'.Axiom load extends:
∀ (
hunk : Tchunk) (m1 m2 : Tmem) (b: Tblock) (ofs: Tofs) (v : Tvalue),extends m1 m2 ∧load
hunk m1 b ofs = Some v ⇒load
hunk m2 b ofs = Some v.Fig. 3. Abstra
t spe
i�
ation of the memory management.

10 Sandrine Blazy, Xavier LeroyThese semanti
s rely on the memory management operations. For instan
e,in the dynami
 semanti
s of PPC, referen
es to variables
orrespond to expli
itloads and stores. There are 13 load instru
tions and 10 store instru
tions inPPC. In the dynami
 semanti
s of C:� A blo
k of memory is allo
ated for ea
h de
lared variable. The
ells of theblo
k that stores an array
onsist of the elements of the array.� Su
h a blo
k is deallo
ated at the end of the s
ope of the variable.� The evaluation of a left value loads a value from memory.� The exe
ution of any assignment statement is based on the load and storeoperations.Memory Layout Figure 4 de�nes the types that were left unspe
i�ed in the ab-stra
t spe
i�
ation in �gure 1. The blo
ks and the o�sets of a blo
k are identi�edby integers. The sizes of stored values are one, two, four and eight bytes. Valuesare either unde�ned values, or integers or �oats or non null pointer values. Theunde�ned value Vundef is a junk value that represents the value of uninitialisedvariables. A value of type pointer is either the integer 0 (that represents theNULL pointer) or a pair of a blo
k identi�er (that is, the address of the �rst
ellof the blo
k) and an o�set between the blo
k and the
ell the pointer points to.This representation of pointers is adapted to C pointer arithmeti
. For instan
e,the expression (Vptr b ofs) + (Vint i) evaluates to the pointer value (Vptrb Vint (ofs + i)) if this evaluation does not fail. In other words, the onlyintegers i that
an be added to a pointer value are those su
h that (ofs + i)is in the bounds of the blo
k b. Another example is the
omparison betweenpointers: two pointers that are not NULL may be
ompared only if they point toa same blo
k.Addresses:
Tblock ::= Z

Tofs ::= ZValues:
Tcelldata ::= Tsize ∗ Tvalue a data
ell is a pair of a size and a value
Tsize ::= {1, 2, 4, 8} number of bytes of a
ell
Tvalue ::= Vint Tinteger integer

| Vfloat T�oat �oat
| Vptr Tblock Tofs pointer (a blo
k and an o�set)
| Vundef unde�ned valueFig. 4. An implementation of the memory layout.Usually, properties of memory layouts are
lassi�ed into separation, adja
en
yand
ontainment properties [26℄. This is also the kind of properties of our memory

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 11model. Separation and adja
en
y of memory blo
ks are valid in our model by
onstru
tion. By
onstru
tion, ea
h memory blo
k belongs to only one memoryarea. Two di�erent blo
ks are also separated by
onstru
tion sin
e a
ell of ablo
k
an not be a

essed from another blo
k. The
ontainment property we useis the extends relation.Memory Management The memory
hunks that were left unspe
i�ed in �g-ure 3 are implemented in �gure 5 in the following way: integers are stored oneither one, two or four bytes, and �oats are stored on either four or eight bytes.Integers that are stored on one or two bytes are either signed or unsigned. Pointervalues are implemented by integers stored on four bytes.The allo
 and free fun
tions never fail. The allo
ation method is linear. load
hunk m b ofs fails when b does not identify a blo
k of the data area of m andwhen the property in bounds
hunk ofs b is not true. The load fun
tion
allsthe load result fun
tion in order to load ea
h
ell that needs to be loaded in theblo
k b from the o�set ofs. The load result fun
tion fet
hes a value in memoryand
asts this value to a value of a type de�ned by a memory
hunk, when thememory
hunk is
ompatible with the value. Memory
hunks determine also if ablo
k needs to be �lled with digits. For instan
e, when an integer that is storedon one or two bytes is loaded, it is automati
ally extended to four bytes (by thefun
tion
alled load result), either by adding zeroes if the integer is unsigned, orby repli
ating the sign bit if the integer is signed (see the fun
tion
ast1signed
alled by load result). The load result fun
tion fails if the memory
hunk is not
ompatible with the value, for instan
e if it attempts to load a �oat value whenthe memory
hunk
orresponds to an integer. For spa
e reasons, the de�nitionof this fun
tion is not fully detailed in �gure 5.Some new properties of the operations that manage the memory are de�nedin the implementation. They have not been de�ned in the abstra
t spe
i�
ationbe
ause they rely on the implementation of the memory management operations.These properties express that the memory blo
ks remember
orre
tly the storedvalues. More pre
isely:1. If an operation updates a blo
k of a memory area by storing a value in it,then the
ontent of this blo
k be
omes this value,2. and the other blo
ks of memory are not modi�ed.3. A blo
k whi
h is modi�ed by an operation belongs to the memory that resultsfrom the modi�
ation.These properties are often
alled the good variable properties [25℄. Our
erti�-
ation uses them in order to prove analogous properties on sta
k frames builtby the
ompiler. As these properties are related to memory blo
ks
onsisting ofmemory
ells, their proof relies on analogous properties for memory
ells.Figure 6 spe
i�es some of the good variable properties. In the two theorems
alled load store same and load store other, a value v is stored in a memory m1at the o�set ofs1 of a blo
k b1, given a memory
hunk
alled
hunk. The resultingmemory is
alled m2. The �rst theorem
alled load store same states that v is

12 Sandrine Blazy, Xavier LeroyMemory
hunks:
Tchunk ::= Mint1signed signed integer stored on one byte

| Mint1unsigned unsigned integer stored on one byte
| Mint2signed signed integer stored one on two bytes
| Mint2unsigned unsigned integer stored on two bytes
| Mint4 integer stored on four bytes
| Mfloat4 �oat stored on four bytes
| Mfloat8 �oat stored on eight bytesMemory management operations:De�nition size
hunk (
hunk : T
hunk) := . . .(* number of bytes
orresponding to
hunk, e.g. 4 for Mint4 *)De�nition in bounds (
hunk : T
hunk) (ofs: Tofs) (lo hi : Tblo
k) :=lo ≤ ofs ∧ ofs + size
hunk
hunk ≤ hi.De�nition load result (
hunk : T
hunk) (v : Tvalue) :=mat
h
hunk, v with| Mint1signed, Vint n : Some (Vint (
ast1signed n))(* values are
asted in order to �t the memory
hunks *)| . . .| Mint4, Vptr b ofs : Some (Vptr b ofs)| M�oat4, V�oat f : Some (V�oat (singleo�oat f))| . . .| , : None(* erroneous
ases, e.g. an integer
hunk su
h as Mint4 and a �oat value *)end.De�nition load (
hunk : T
hunk) (m: Tmem) (b: Tblo
k) (ofs: Tofs) :if valid data blo
k m b ∧ in bounds
hunk ofs m(b).low m(b).highthen load result
hunk . . .(* the se
ond parameter is the value that is found in
ell b at o�set ofs *)else None. Fig. 5. An implementation of the memory management.also the value that is loaded in m2 at the address where it has been stored. These
ond theorem
alled load store other states that the store operation of v (in ablo
k b1 at the o�set ofs1) does not
hange any other value of the memory, i.e.any other value that is fet
hed either in another blo
k b2 or in the same blo
k b1but at another valid o�set ofs2. An o�set is valid in a blo
k if there are enoughremaining
ells in the blo
k in order to store a value form this o�set.Other properties are related to the high and low bounds of memory blo
ks.They express the
ompatibility between the bounds of a blo
k and the o�setfrom where a value is stored or loaded in that blo
k. For instan
e, the theoremlow bound store of �gure 7 states that if a value v is stored in a memory m1,then the resulting memory m2 has the same low bound as m1. Finally, a fewother relations between the memory management operations. For instan
e, the

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 13Theorem load store same:
∀ (
hunk : T
hunk) (m1 m2 : Tmem) (b1 : Tblo
k) (ofs1 : Tofs) (v : Tvalue),store
hunk m1 b1 ofs1 v = Some m2 ⇒load
hunk m2 b1 ofs1 = Some (load result
hunk v).Theorem load store other:
∀ (
hunk1
hunk2 : T
hunk) (m1 m2 : Tmem) (b1 b2 : Tblo
k)(ofs1 ofs2 : Tofs) (v : Tvalue),store
hunk1 m1 b1 ofs1 v = Some m2 ∧(b1 6= b2 ∨ ofs2 + size
hunk
hunk2 ≤ ofs1 ∨ ofs1 + size
hunk
hunk1 ≤ ofs2)

⇒ load
hunk2 m2 b2 ofs2 = load
hunk2 m1 b2 ofs2.Fig. 6. Some good-variable propertiestheorem
alled store allo
 states that a value may be stored from a given o�setin a newly allo
ated blo
k if the memory
hunk and the o�set are
ompatiblewith the bounds of this blo
k.Theorem low bound store:
∀ (
hunk : T
hunk) (m1 m2 : Tmem) (b b' : Tblo
k) (ofs: Tofs) (v : Tvalue),store
hunk m1 b ofs v = Some m2 ⇒(m2.memdata)(b').low = (m1.memdata)(b').low.Theorem store allo
:
∀ (
hunk : T
hunk) (m1 m2 : Tmem) (b lo hi : Tblo
k) (ofs: Tofs) (v : Tvalue),allo
 m1 lo hi = Some (m2, b) ∧in bounds
hunk ofs lo hi ⇒

∃ m3 | store
hunk m2 b ofs v = Some m3.Fig. 7. Other properties of memory management operations3.3 Implementation of a Finite MemoryThe exe
ution of a sour
e program may ex
eed the memory of the target ma-
hine. Thus, we have implemented another memory model where the size ofmemory
ells and the number of blo
ks in ea
h memory area are �nite. Theonly di�eren
e with the previous model relies in the implementation of the allo
operation: the allo
ation of a blo
k fails if there is no free
ell left. Thus, the the-orems su
h as store allo
 that are de�ned in the �rst implementation still holdin this se
ond implementation. When the allo
ation does not fail, it behaves asthe allo
ation of the in�nite memory. This is shown in �gure 8. The theoremallo
 �nite to in�nite results from the de�nition of both allo
ation operations.The
ompilation of a program fails as soon as an allo
ation fails. As ea
h stepof the
ompilation pro
ess allo
ates memory blo
ks, there are many opportunitiesfor the
ompiler to fail. In the memory that stores data, the evolution of blo
k

14 Sandrine Blazy, Xavier LeroyAbstra
t spe
ifi
ation:allo
 : Tmem → Tofs → Tofs → option (Tmem ∗ Tblock)Two implementations:De�nition allo
1 (m:Tmem) (lo hi : Tblo
k) :=Some . . . (* never fails *)De�nition allo
2 (m:Tmem) (lo hi : Tblo
k) :=if (* no free
ell left *) then Noneelse allo
1 m lo hi.Theorem allo
 �nite to in�nite:
∀ (m1 m2 : Tmem) (b lo hi : Tblo
k),allo
2 m1 lo hi = Some (m2, b) ⇒ allo
1 m1 lo hi = Some (m2, b).Fig. 8. Reuse of the allo
ation operationallo
ation during the
ompilation pro
ess is the following. For ea
h instan
e ofa
alled pro
edure:� The dynami
 semanti
s of C allo
ates a blo
k for ea
h de
lared variable.� The translation from C to the �rst intermediate language L1 of the
om-piler allo
ates a single blo
k for all the lo
al variables of the pro
edure thatare either of array type or whose addresses are taken. Thus the number ofallo
ated blo
ks de
reases but the size of ea
h blo
k in
reases.In the
ase of the translation from C to L1, the size of all allo
ated blo
ks inthe data area is the same in the semanti
s of C and L1. In other translations fromone intermediate language Li to another intermediate language Lj, the numberof allo
ated blo
ks in
reases slightly. The translation allo
ates indeed the blo
ksthat
orrespond to the blo
ks of Li but also other blo
ks that are built by thetranslation of long expressions made up of several variables and fun
tion
alls.Con
erning the memory area that stores
ode, ea
h translation of the
om-pilation pro
ess
omputes information that need to be stored in memory. At theend of the pro
ess, all the information have been
omputed and the target
odemay be emitted. If for instan
e a translation from one intermediate language

Li to another intermediate language Lj o

urs, the semanti
s of Li allo
atesas many blo
ks as the dynami
 semanti
s of Lj. However, the blo
ks allo
atedby the dynami
 semanti
s of Lj are be
oming bigger. For instan
e, the returnaddress of a
alled pro
edure is only known (and stored) at the end of the
om-pilation pro
ess. As the translations do not preserve the
ontents of memoryblo
ks, they may fail be
ause they translate blo
ks into bigger blo
ks. Thus:� During the
ompilation pro
ess, any translation fails when it translates ablo
k into a bigger blo
k.� The exe
ution of a translated program may fail, although the exe
ution ofthe program does not fail.

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 15With su
h a �nite memory model, we prove the following
orre
tness resultfor ea
h translation: if the translation of a program does not fail, if that programterminates on some �nal memory state, and if the translated program also ter-minates, then it terminates on the same memory state. This property is weakerthan the property we prove for an in�nite memory model.Instead of de�ning a more pre
ise memory model, we intend to performa stati
 analysis that will tra
k the amount of allo
ated memory for a given
ompilable program and
ompute an approximation of this amount if the
ontrol�ow graph of the program is a
y
li
. We will then have to prove an equivalen
eresult between the exe
ution of the program and its exe
ution in a sta
k dis
iplinelanguage where only one blo
k is allo
ated. This will require the de�nition ofsu
h a language and the proof of semanti
 equivalen
e between this languageand the
orresponding language of the
ompiler.4 From Formal Spe
i�
ations to CodeThis se
tion gives an overview of the ar
hite
ture of the Coq development. Fig-ures 9 and 10 show the Coq modules that have been built in order to formallyverify the memory model. OCaml modules have been automati
ally generatedfrom them. The generated modules have the same ar
hite
ture as the Coq mod-ules. The Coq extra
tion me
hanism removes the axioms and theorems, andmore generally the terms of type Prop.The abstra
t spe
i�
ation
onsists of the three signature modules of �g-ure 9. They are de
lared with the keyword Module Type. The module
alledMEM PARAMS
olle
ts the parameters of the memory model. These are Coqvariables of type Set that Coq uses to type abstra
t spe
i�
ations. They de�nethe
ontents and the addressing of memory
ells and are left abstra
t in the signa-ture modules. The module
alled MEM LAYOUT spe
i�es the memory layout.It de�nes the fun
tions and axioms that are detailed in �gures 1 and 2. Thesede�nitions refer to unspe
i�ed types (e.g. Tblo
k) that are de
lared in a module
alled MemP of type MEM PARAMS. The module
alled MEM OPS spe
i�esthe memory management operations. It de�nes the fun
tions and axioms thatare detailed in �gure 3.The �gure 10 shows the modules that implement the signaturemodules. For instan
e, the module MEM PARAMS IMPL implementsthe module MEM PARAMS (see �gures 4 and 5). The module
alledMAKE MEM LAYOUT is the fun
tor that builds a module of typeMEM LAYOUT from a module of type MEM PARAMS. All axioms thathave been de�ned in the signature modules are proved in the implementationmodules (thus be
oming theorems). For instan
e, �gure 10 shows the proofs
ript of the theorem
alled valid not valid di�. This is a very simple proofs
ript that
onsists of a few Coq ta
ti
s. In this example, the proof s
riptunfolds the de�nitions and prove by
ontradi
tion that b
an not be equal to b'.More generally, these ta
ti
s
an be user de�ned and
orrespond to the steps

16 Sandrine Blazy, Xavier LeroyModule Type MEM PARAMS.Parameters T
hunk,Tofs,T
ell, Tvalue: Set.
. . .End MEM PARAMS.Module Type MEM LAYOUT.De
lare Module MemP : MEM PARAMS.Re
ord Tblo
kdata := {high: Tblo
k ; low : Tblo
k ;
ontents: Map (Tblo
k, T
ell)}.
. . .Re
ord Tmem := {memdata: Map (Tblo
k, Tblo
kdata); . . . }.De�nition valid data blo
k (m:Tmem)(b:Tblo
k) := ∃ v, m.memdata(b) = Some v.Axiom valid not valid di�:

∀ m b b', valid data blo
k m b ∧ ¬(valid data blo
k m b') ⇒ b 6= b'.End MEM LAYOUT.Module Type MEM OPS.De
lare Module MemP : MEM PARAMS.De
lare Module MemL: MEM LAYOUT.Parameter load: T
hunk → Tmem → Tblo
k → Tofs → option Tvalue.
. . .Axiom loaded blo
k is valid:

∀
hunk m b ofs v, load
hunk m b ofs = Some v ⇒ valid data blo
k m b.
. . .End MEM OPS.Fig. 9. Ar
hite
ture of the spe
i�
ation (signature modules)that would be used in a hand proof. They are reused to prove intera
tively thetheorems.Our memory model
onsists of several thousands lines of Coq spe
i�
ationsand proofs. The
ompilable OCaml modules that have been automati
ally ex-tra
ted from the Coq spe
i�
ations implement the operations that manage thememory.5 Related WorkSeveral low-level memory models (often
alled ar
hite
ture-
entri
 models) havebeen de�ned. They are dedi
ated to hardware ar
hite
tures and study the impa
tof features su
h as write bu�ers or
a
hes, espe
ially in multipro
essor systems.For instan
e, [22℄ uses a term rewriting system to de�ne a memory model thatde
omposes load and store operations into �ner-grain operations. This modelformalises the notions of data repli
ation and instru
tion reordering. It aims asde�ning the legal behaviours of a distributed shared-memory system that relieson exe
ution tra
e of memory a

esses. These memory models are lower-level

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 17
Module MAKE MEM LAYOUT (P : MEM PARAMS)<: MEM LAYOUT with Module MemP := P.

. . .Theorem valid not valid di�:
∀ m b b', valid data blo
k m b ∧ ¬(valid data blo
k m b') ⇒ b 6= b'.Proof. intros; red ; intros; subst b;
ontradi
tion. Qed.End MAKE MEM LAYOUT.Module MEM PARAMS IMPL <: MEM PARAMS.De�nition Tblo
k := Z .Indu
tive T
hunk := Mint1signed | Mint1unsigned | . . .

. . .End MEM PARAMS IMPL.Module MEM LAYOUT IMPL <: MEM LAYOUT :=MAKE MEM LAYOUT MEM PARAMS IMPL.Module MEM OPS IMPL <: MEM OPS.Module MemP := MEM PARAMS IMPL.Module MemL := MEM LAYOUT IMPL.De�nition load (
hunk : T
hunk) (m: Tmem) (b:Tblo
k) (ofs: Tofs) : option Tvalue:= . . .Theorem loaded blo
k is valid: ∀
hunk m b ofs v,load
hunk m b ofs = Some v ⇒ valid data blo
k m b.Proof. . . . Qed.Theorem load store same: ∀
hunk m1 m2 b1 ofs1 v,store
hunk m1 b1 ofs1 v = Some m2 ⇒load
hunk m2 b1 ofs1 = Some (load result
hunk v).Proof. . . . Qed.End MEM OPS IMPL.Fig. 10. Ar
hite
ture of the spe
i�
ation (implementation modules)

18 Sandrine Blazy, Xavier Leroythan ours (thus relying on a very di�erent representation of memory) and arenot dedi
ated to C -like languages.Other resear
h has
on
entrated on the formalisation of properties of pro-grams that manipulate re
ursive data stru
tures de�ned by pointers. New logi
sthat
apture
ommon storage invariants have also been de�ned in order to fa-
ilitate and automate the proof of properties about pointers. These logi
s arebased on separation logi
 [5℄, an extension of Hoare logi
 where assertions mayrefer to pointer expressions in a more
on
ise and meaningful way. Two operatorsfa
ilitate the expression of memory properties in separation logi
: a separative
onjun
tion allows one to express the separation of one pie
e of memory withrespe
t to another, a separating impli
ation allows one to introdu
e hypothesesabout the memory layout. The de�nition of a re�nement
al
ulus for the sep-aration logi
 is
urrently investigated [16℄. In the near future, separation logi
should be implemented, as is Hoare logi
 in tools dedi
ated to the B method.Some ideas of separation logi
 have been formalised in Isabelle/HOL in orderto verify the
orre
tness of Java programs with pointers [15℄. [9℄ presents atool for formally proving that a C program is free of null pointer dereferen
ingand out-of-bounds array a

ess. Some of our properties of memory managementoperations are also stated in [15℄ and [9℄.Another way to prove properties about programs involving pointers is to de-�ne type systems that enable
ompilers to dete
t errors in programs. Some typesystems are dedi
ated to a spe
i�
 part of a
ompiler (e.g. assembly
ode [8℄).Type systems for memory management have been applied for low-level mem-ory management [24℄. For instan
e, typed region systems where ea
h memorylo
ation has an intended type and an a
tual type, have been de�ned to verifygarbage
olle
tors.Mu
h work has been done on verifying the
omplete
orre
tness of a
ompiler.[11℄ and [3℄ use re�nement as a
ompilation model. In the former, a re�nement
al
ulus is de�ned to support the
ompilation of programs written in an idealisedhigh-level language into the .NET assembler. The aim of this work is to re�nethe whole
ompilation pro
ess and this approa
h is not automated by tools.The latter uses a term rewriting system to redu
e programs into normal formsrepresenting target programs.The translation validation approa
h [18, 19, 10, 20, 21℄ aims at validating ev-ery run of the
ompiler, produ
ing a formal proof that the produ
ed target
odeis a
orre
t implementation of the sour
e
ode. This approa
h is based on pro-gram
he
king and on stati
 analysis. It has been applied a lot for validating avariety of
ompiler optimizations, with a re
ent fo
us on loop transformations[27℄. In the proof
arrying
ode approa
h [17, 2, 12℄, the
ompiler is rewrittenin a
ertifying
ompiler that produ
es both a
ompiled
ode and a proof termof some properties (
alled safety rules) to verify, that have been added in thesour
e program. Safety rules are written in �rst-order predi
ate logi
 extendedwith predi
ates for type safety and low-level memory safety. Many spe
ialisedtype systems have been used in this approa
h tat has been extensively appliedto Java byte
ode
erti�
ation.

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 19Our work belongs to a proje
t that investigates the feasibility of formallyverifying the
orre
tness of a C -like
ompiler itself. The goal is to write the
ompiler dire
tly in the Coq spe
i�
ation language. Other proje
ts that developma
hine-
he
ked proofs of
ompiler
orre
tness fo
us on data �ow analyses andother
ompiler transformations [6, 23℄. They do not require a memory model aspre
ise as ours.6 Con
lusionThis paper has presented a formalisation and a veri�
ation in Coq of a memorymodel for C -like languages. Thanks to the use of Coq modules, this formalisa-tion has been spe
i�ed at two levels of abstra
tion. Two
on
rete spe
i�
ationshave been implemented from an abstra
t spe
i�
ation. They des
ribe an in�nitememory and a �nite memory. Both memory models have a similar behaviour ex-
ept in the
ase of failure of the allo
ation of memory blo
ks. A signi�
ant partof the spe
i�
ations and
orre
tness proofs have been fa
tored out through theuse of modules. The memory model has been implemented as part of an ongoing
erti�
ation of a moderately-optimising C
ompiler. This
ompiler relies on 7di�erent languages whose formal semanti
s refer to the memory model, and ontransformations that require extensive reasoning over the memory model. Manyproperties have been proved and
erti�ed programs have been synthesised fromthe formalisation.A limitation of our
ompiler is that the
orre
tness proofs of the transforma-tions use simulation lemmas that apply only when every statement of the sour
e
ode is mapped to zero, one or several statements of the transformed
ode. Thisis not su�
ient to prove the
orre
tness of more sophisti
ated optimisations su
has
ode motion, lifting of loop-invariant
omputations or instru
tion s
heduling,where
omputations o

ur in a di�erent order in the sour
e and transformed
ode. Be
ause of this limitation, we envision to de�ne a notion of equivalen
ebetween memory states and to perform these optimisations on a higher-levelintermediate language, whose big-step semanti
s make it easier to reorder
om-putations without worrying about intermediate
omputational states that arenot equivalent.Another
urrent fo
us is the formalisation of non-terminating programs. Thelanguages of our
ompiler are de�ned by big-step semanti
s that hide non-termination of programs. Our
orre
tness proof states that any sour
e programthat terminates on some �nal memory state is
ompiled into a program thatalso terminates, produ
es the same memory state and
alls the same fun
tionsin the same
ontexts. Previous experiments in the writing of small-step seman-ti
s showed us that they are not adapted for proving on ma
hine properties su
has semanti
 equivalen
e between languages. We intend to de�ne semanti
s that
olle
t more information than big-step semanti
s but that are not as
on
rete assmall-step semanti
s.

20 Sandrine Blazy, Xavier LeroyA
knowledgementsWe would like to thank C.Dubois and P.Letouzey for fruitful dis
ussions aboutthis work.Referen
es1. The Coq proof assistant. http://
oq.inria.fr.2. A.W. Appel. Foundational proof-
arrying
ode. In IEEE Symp. on Logi
 in Com-puter S
ien
e (LICS), page 247, Washington, DC, USA, June 2001.3. A.Sampaio. An algebrai
 approa
h to
ompiler design, volume 4 of AMAST seriesin
omputing. World S
ienti�
, 1997.4. Y. Bertot and P. Castéran. Intera
tive Theorem Proving and Program DevelopmentCoq'Art: The Cal
ulus of Indu
tive Constru
tions. Springer Verlag, 2004.5. R. Bornat. Proving pointer programs in Hoare logi
. In 5th Conf. on Mathemati
sof Program Constru
tion, pages 102�126. Springer-Verlag, 2000.6. D. Ca
hera, T. Jensen, D. Pi
hardie, and V. Rusu. Extra
ting a Data Flow Anal-yser in Constru
tive Logi
. In Pro
. of Europ. Symp. on Programming (ESOP'04),number 2986 in Le
ture Notes in Computer S
ien
e, pages 385�400. 2004.7. J. Chrz¡sz
z. Modules in Type Theory with Generative De�nitions. PhD thesis,Warsaw Univerity and University of Paris-Sud, January 2004.8. D.Yu and Z. Shao. Veri�
ation of safety properties for
on
urrent assembly
ode.In Int. Conf. on Fun
tional Programming (ICFP), pages 175�188, Snowbird, USA,September 2004.9. J.-C. Filliâtre and C. Mar
hé. Multi-Prover Veri�
ation of C Programs. In 6th Int.Conf. on Formal Engineering Methods (ICFEM), volume 3308 of Le
ture Notes inComputer S
ien
e, pages 15�29, Seattle, November 2004. Springer-Verlag.10. G. Goos andW. Zimmermann. Veri�
ation of
ompilers. In Corre
t System Design,Re
ent Insight and Advan
es, , pages 201�230, London, UK, 1999. Springer-Verlag.11. G.Watson. Compilation of re�nement for a pra
ti
al language. In 5th Int. Conf. onFormal Engineering Methods (ICFEM), volume 2885 of Le
ture Notes in ComputerS
ien
e, Singapore, November 2003. Springer-Verlag.12. N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A synta
ti
 approa
h tofoundational proof-
arrying
ode. Journal of Automated Reasoning, 31(3-4):191�229, September 2003.13. X. Leroy. Formal
erti�
ation of a
ompiler ba
k-end, or: programming a
ompilerwith a proof assistant. 2005. draft, submitted for publi
ation.14. P. Letouzey. Programmation fon
tionnelle
erti�ée � L'extra
tion de programmesdans l'assistant Coq. PhD thesis, Université Paris-Sud, July 2004.15. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logi
. In Auto-mated Dedu
tion (CADE-19), volume 2741 of Le
ture Notes in Computer S
ien
e,pages 121�135. Springer-Verlag, 2003.16. I. Mijajlovi
 and N. Torp-Smith. Re�nement in separation
ontext. In Se
ondworkshop on semanti
s, program anlysis and
omputing analysis for memory man-agement (SPACE), Veni
e, Italy, January 2004.17. G. Ne
ula. Proof
arrying
ode. In Pro
. of Prin
iples Of Progamming LanguagesConf. (POPL), January 1997.18. G. Ne
ula. Translation validation for an optimizing
ompiler. In ACM SIGPLANConf. on Programming Language Design and Implementation (PLDI), pages 83�95, 2000.

Formal Veri�
ation of a Memory Model for C -Like Imperative Languages 2119. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Pro
. of the4th Int. Conf. on Tools and Algorithms for Constru
tion and Analysis of Systems(TACAS), pages 151�166, London, UK, 1998. Springer-Verlag.20. M. Rinard and D. Marinov. Credible
ompilation with pointers. In Workshop onRun-Time Result Veri�
ation (RTRV), Trento, Italy, July 1999.21. X. Rival. Symboli
 transfer fun
tion-based approa
hes to
erti�ed
ompilation. InPrin
iples Of Progamming Languages Conf. (POPL), pages 1�13. 2004.22. X. Shen, Arvind, and L. Rudolph. Commit-re
on
ile & fen
es (CRF): a new mem-ory model for ar
hite
ts and
ompiler writers. In ISCA '99: 26th symposium onComputer ar
hite
ture, pages 150�161, Washington, DC, USA, 1999.23. S.Lerner, T.Millstein, E.Ri
e, and C.Chambers. Automated soundness proofs fordata�ow analyses and transformations. In Prin
iples Of Progamming LanguagesConf. (POPL), Long Bea
h, USA, 2005.24. S.Monnier. Typed regions. In workshop on semanti
s, program anlysis and
om-puting analysis for memory management (SPACE), Veni
e, Italy, January 2004.25. R.D. Tennent and D.R. Ghi
a and. Abstra
t models of storage. Higher-Order andSymboli
 Computation, 13(1/2):119�129, 2000.26. D. Walker. Sta
ks, heaps and regions: one logi
 to bind them. In Se
ond workshopon semanti
s, program anlysis and
omputing analysis for memory management(SPACE), Veni
e, Italy, January 2004. invited talk.27. Y.Hu, C.Barrett, B.Goldberg, and A. Pnueli. Validating more loop optimizations.InWorkshop on Compiler Optimization Meets Compiler Veri�
ation (COCV), Ed-inburgh, UK, 2005.

