
A Formally-Verified C Compiler Supporting

Floating-Point Arithmetic

Sylvie Boldo∗, Jacques-Henri Jourdan†, Xavier Leroy†, and Guillaume Melquiond∗

∗Inria Saclay–Île-de-France & LRI, CNRS UMR 8623, Université Paris-Sud,

Centre Universitaire d’Orsay, bât 650 (PCRI), Orsay, F-91405

Email: sylvie.boldo@inria.fr, guillaume.melquiond@inria.fr
†Inria Paris–Rocquencourt,

Domaine de Voluceau, BP 105, Le Chesnay, F-78153

Email: jacques-henri.jourdan@inria.fr, xavier.leroy@inria.fr

Abstract—Floating-point arithmetic is known to be tricky:
roundings, formats, exceptional values. The IEEE-754 standard
was a push towards straightening the field and made formal
reasoning about floating-point computations easier and flour-
ishing. Unfortunately, this is not sufficient to guarantee the
final result of a program, as several other actors are involved:
programming language, compiler, architecture. The CompCert
formally-verified compiler provides a solution to this problem:
this compiler comes with a mathematical specification of the
semantics of its source language (a large subset of ISO C90)
and target platforms (ARM, PowerPC, x86-SSE2), and with a
proof that compilation preserves semantics. In this paper, we
report on our recent success in formally specifying and proving
correct CompCert’s compilation of floating-point arithmetic.
Since CompCert is verified using the Coq proof assistant, this
effort required a suitable Coq formalization of the IEEE-754
standard; we extended the Flocq library for this purpose. As a
result, we obtain the first formally verified compiler that provably
preserves the semantics of floating-point programs.

Index Terms—floating-point arithmetic; verified compilation;
formal proof; floating-point semantic preservation;

I. INTRODUCTION

Use and study of floating-point (FP) arithmetic have in-

tensified since the 70s [1], [2]. At that time, computations

were not standardized and, due to the differences between

architectures, the use of the same source program in different

contexts gave different results. Since the IEEE-754 standard of

1985 and its revision in 2008 [3], things should have changed

as reproducibility was a keyword. Each basic operation is

guaranteed to be computed as if the computation was done

with infinite precision and then rounded. The goal was that

the same program could be run on various platforms and

give the same result. It allowed the development of many

algorithms coming with mathematical proofs based on the fact

that operations were correctly rounded. Since the 2000s, this

was even pushed to formal proofs of algorithms or hardware

components: in PVS [4], in ACL2 [5], in HOL-light [6] and

in Coq [7], [8]. The basic axiom for algorithms and the basic

goal for hardware components was still that all the operations

are correctly rounded.

This work was supported by the VERASCO project (ANR-11-INSE-003)
of the French National Agency for Research (ANR).

To complicate matters further, the processor architecture is

not the only party responsible for the computed results. Stand

also accused the programming language and the compiler used.

We will focus on the compiler, as it can deviate from what the

programmer wants or what was proved from the written code.

To illustrate what the compiler can change, here is a small

example in C:

int main () {

double y, z;

y = 0x1p-53 + 0x1p-78; // y = 2−53 + 2−78

z = 1. + y - 1. - y;

printf("%a\n", z);

return 1;

}

Experts may have recognized a Fast-Two-Sum [2] that com-

putes the round-off error of a FP addition by ((a+b)−a)−b for

|a| ≥ |b|. This very simple program compiled with GCC 4.6.3

gives three different answers on an x86 32-bit architecture

depending on the chosen level of optimization.

Optimization level Program result

-O0 -0x1p-78

-O1, -O2, -O3 0x1.ffffffp-54

-Ofast 0x0p+0

How can we explain the three results? For the first two

results, the answer lies in the x86 architecture: it may compute

with double precision (64 bits, 53 bits of precision) or with

extended precision (80 bits, 64 bits of precision). For each

operation, the compiler may choose to round the infinitely-

precise result either to extended precision, or to double pre-

cision, or first to extended and then to double precision. The

latter is called a double rounding. In all cases, y is computed

exactly: y = 2−53 + 2−78.

With the -O0 optimization, all the computations are per-

formed with extended precision and rounded in double pre-

cision only once at the end. With -O1 and higher, the result

(1+ y)− 1 is pre-computed by the compiler and the program

only computes the last subtraction and prints the value. With

-Ofast, there is no computation at all in the program but

only the output of the constant 0. This optimization level

turns on -funsafe-math-optimizations which allows the

reordering of FP operations. It is explicitly stated in GCC

documentation that this option “can result in incorrect output

for programs which depend on an exact implementation of

IEEE or ISO rules/specifications for math functions”.

Another possible discrepancy comes from the use of the

fused-multiply-add operator (FMA). For example, consider a×
b+ c× d and let us denote the rounding operator by ◦. When

a FMA is available, the compiler may choose either ◦(a× b+
◦(c × d)), or ◦(◦(a × b) + c × d), or ◦(◦(a × b) + ◦(c × d))
which may give different results. A wide set of examples of

strange FP behaviors can be found in [9], [10].

As surprising as it may seem, all the discrepancies de-

scribed so far are allowed by the ISO C standard [11], which

leaves much freedom to the compiler in the way it im-

plements FP computations. Sometimes, optimizing compilers

take additional liberties with the source programs, generating

executable code that exhibits behaviors not allowed by the

specification of the source language. This is called miscompi-

lation. Consider the following example, adapted from GCC’s

infamous “bug #323”:

void test(double x, double y)

{

const double y2 = x + 1.0;

if (y != y2) printf("error\n");

}

int main()

{

const double x = .012;

const double y = x + 1.0;

test(x, y);

return 0;

}

For an x86 32-bit target at optimization level -O1, all

versions of GCC prior to 4.5 miscompile this code as follows:

the expression x + 1.0 in function test is computed in

extended precision, as allowed by C, but the compiler omits

to round it back to double precision when assigning to y2, as

prescribed by the C standard. Consequently, y and y2 compare

different, while they must be equal according to the C standard.

Miscompilation happens more often than one may think: Yang

et al [12] tested many production-quality C compilers using

differential random testing, and found hundreds of cases where

the compiler either crashes at compile-time or—much worse—

silently generates an incorrect executable from a correct source

program.

As the compiler gives so few guarantees on how it im-

plements FP arithmetic, it therefore seems impossible to

guarantee the result of a program. In fact, most analysis of FP

programs assume correct compilation and a strict application

of the IEEE-754 standard where no extended registers nor

FMA are used. This assumption is correct for embedded

software such as those used in avionics. For the automatic

analysis of C programs, a successful approach is based on

abstract interpretation, and tools include Astre [13], [14]

and Fluctuat [15]. Another method to specify and prove

behavioral properties of FP programs is deductive verification

system: specification languages have to take into account

FP arithmetic. This has been done for Java in JML [16],

for C in ACSL [17], [18]. However, all these works only

follow strictly the IEEE-754 standard, with neither FMA,

nor extended registers, nor considering optimization aspects.

Recently, several possibilities have been offered to take these

aspects into account. One approach is to cover all the ways

a compiler may have compiled each FP operation and to

compute an error bound that stands correct whatever the

compiler choices [19]. Another approach is to analyze the

assembly code to get all the precision information [20].

Our approach is different: rather than trying to account

for all the changes a compiler may have silently introduced

in a FP program, we have focused on getting a correct and

predictable compiler that supports FP arithmetic. Concerning

compilers and how to make them more trustworthy, Milner

and Weyrauch [21] were the first to mechanically prove the

correctness of a compiler, although for a very simple language

of expressions. Moore [22] extended this approach to an

implementation of the Piton programming language. Li et

al [23] showed that one can compile programs with proof,

directly from the logic of the HOL4 theorem prover. A year

later, Myreen [24] made contributions both to approaches

for verification of programs and methods for automatically

constructing correct code.

To build our compiler, we started from CompCert [25],

a formally-verified compiler described in Section III and

extended it with FP arithmetic. As CompCert is developed

using the Coq proof assistant, we had to build on a Coq library

formalizing FP arithmetic: we relied on the Flocq library [8]

and extended it to serve the needs of a verified compiler. With

all these components, we were able to get a correct, predictable

compiler that conforms strictly to the IEEE-754 standard.

In this article, we present in Section II the semantics

of FP arithmetic in programs, depending in particular on

the programming language. In Section III, we describe the

CompCert certified compiler. We will explain in Section IV

the required additions to Flocq to represent all IEEE-754

FP numbers. In Section V, we detail what modifications to

CompCert were needed to handle FP arithmetic.

II. SEMANTICS OF FLOATING-POINT ARITHMETIC

Starting from an algorithm using FP arithmetic, there is a

long road until one gets some machine code running on a

processor. First, there is the question of what the original algo-

rithm is supposed to compute. Hopefully, the programmer has

used the same semantic as the IEEE-754 standard for the oper-

ations, the goal being to get portable code and reproducible re-

sults. Then the programmer chooses a high-level programming

language, since assembly languages would defeat the point

of portability. Unfortunately, high-level language semantics

are often rather vague with respect to FP operations, so as

to account for as many execution environments as possible,

even non-IEEE-754-compliant ones. So the programmer has

to make some assumptions on how compilers will interpret the

program. Unfortunately, compilers might have made different

assumptions while still being compliant with the language

standard, or they might depart from the standard for the sake

of execution speed (possibly controlled by a compilation flag).

Finally, the operating system and various libraries play a role

too, as they might modify the default behavior of FP units

or emulate features not supported in hardware, e.g. subnormal

numbers.

A. Java

Let us have an overview of some of the possible semantics

through the lens of three major programming languages. Java,

being a relatively recent language, started with the most

specified description of FP arithmetic. It proposed two data

types that match the binary32 and binary64 formats of

IEEE-754. Moreover, arithmetic operators are mapped to the

corresponding operators from IEEE-754, but rounding modes

other than default are not supported, and neither are the

override of exceptional behaviors. The latter is hardly ever

supported by languages so we will not focus on it in the

remaining of this paper.

Unfortunately, a non-negligible part of the architectures the

Java language was targeting had only access to x87-like FP

units, which allow to set the precision of computation but

not the allowed range of exponents. Thus, they behave as

if they were working with exotic FP formats that have the

usual IEEE-754 precision but an extended exponent range.

On such architectures, complying with the Java semantics was

therefore highly inefficient. As a consequence, the language

later evolved and the FP semantics were relaxed to account

for a potential extended exponent range:

Within an expression that is not FP-strict, some

leeway is granted for an implementation to use an

extended exponent range to represent intermediate

results. (15.4 FP-strict expressions, Java SE 7)

The Java language specification, however, introduced a

strictfp keyword for reinstating the early IEEE-754-

compliant behavior.

B. C

The C language comes from a time where FP units were

more exotic, so the wording of the standard leaves much

more liberty to the compiler. Intermediate results can not only

be computed with an extended range, they can also have an

extended precision.

The values of operations with floating operands [. . .]

are evaluated to a format whose range and precision

may be greater than required by the type. (5.2.4.2.2

Characteristics of floating types, C11)

In fact, most compilers interpret the standard in an even more

relaxed way: values of local variables that are not spilled to

memory might preserve their extended range and precision.

Note that this optimization opportunity also applies to the

use of a FMA operator for computing the expression a×b+c,
as the intermediate product is then performed with a much

greater precision.

While Annex F of the C standard allows a compiler to

advertise compliance with IEEE-754 FP arithmetic if it sup-

ports a specified set of features, none of these features reduces

the leeway compilers have in choosing intermediate formats.

Moreover, features of Annex F are optional anyway.

C. Fortran

The Fortran language gives even more leeway to compilers,

allowing them to rewrite expressions as long as they do not

change the value that would be obtained if the computations

were to be infinitely-precise.

Two expressions of a numeric type are mathe-

matically equivalent if, for all possible values of

their primaries, their mathematical values are equal.

(7.1.5.2.4 Evaluation of numeric intrinsic operations,

Fortran 2008)

The standard, however, forbids such transformations when

they would violate the “integrity of parentheses”. For instance,

(a+b)−a−b can be rewritten as 0, but ((a+b)−a)−b cannot,

since it would break the integrity of the outer parentheses.

This allowance for assuming FP operations to be associative

and distributive has unfortunately leaked to compilers for

other languages, which do not even have the provision about

preserving parentheses. For instance, the seemingly innocuous

-Ofast option of GCC will enable this optimization for the

sake of speed, at the expense of the conformance with the C

standard.

D. Stricter Semantics

Fortunately, thanks to the IEEE-754 standard and to hard-

ware makers willing to design strictly-compliant FP units [26],

the situation is improving. It is now possible to specify pro-

gramming languages without having to keep the FP semantic

vague and obscure so that vastly incompatible architectures

can be supported. Moreover, even if the original description

of a language was purposely unhelpful, compilers can now

document precisely how they interpret FP arithmetic for

several architectures at once. In fact, in this work, we are

going further: not only are we documenting what the expected

semantic of our compiler is, but we are formally proving that

the compiler follows it for all the architectures it supports.

III. FORMALLY-VERIFIED COMPILATION

As mentioned in Introduction, ordinary compilers some-

times miscompile source programs: starting with a correct

source, they can produce executable machine code that crashes

or computes the wrong results. Formally-verified compilers

such as CompCert C come with a mathematical proof of

semantic preservation that rules out all possibilities of mis-

compilation. Intuitively, the semantic preservation theorem

says that the executable code produced by the compiler always

executes as prescribed by the semantics of the source program.

Before proving a semantic preservation theorem, we must

make its statement mathematically precise. This entails (1)

specifying precisely the program transformations (compiler

passes) performed by the compiler, and (2) giving mathe-

matical semantics to the source and target languages of the

compiler (in the case of CompCert, the CompCert C subset of

ISO C90 and ARM/PowerPC/x86 assembly languages, respec-

tively). The semantics used in CompCert associate observable

behaviors to every program. Observable behaviors include

normal termination, divergence (the program runs forever),

and abnormal termination on an undefined behavior (such as

an out-of-bounds array access). They also include traces of all

input/output operations performed by the program: calls to I/O

library functions (such as printf) and accesses to volatile

memory locations.

Equipped with these formal semantics, we can state pre-

cisely the desired semantic preservation results. Here is one

such result that is proved in CompCert:

Theorem 1 (Semantic preservation) Let S be a

source C program. Assume that S is free of undefined

behaviors. Further assume that the CompCert compiler,

invoked on S, does not report a compile-time error,

but instead produces executable code E. Then, any

observable behavior B of E is one of the possible

observable behaviors of S.

The statement of the theorem leaves two important degrees

of freedom to the compiler. First, a C program can have several

legal behaviors, owing to underspecification in expression

evaluation order, and the compiler is allowed to pick any one

of them. Second, undefined C behaviors need not be preserved

during compilation, as the compiler can optimize them away.

This is not the only possible statement of semantic preserva-

tion: indeed, CompCert proves additional, stronger statements

that imply the theorem above. The bottom line, however, is

that the correctness of a compiler can be characterized in a

mathematically-precise, yet intuitively understandable way, as

soon as the semantics of the source and target languages are

specified.

Concerning arithmetic operations in C and in assembly

languages, their semantics are specified in terms of two Coq

libraries, Int and Float, which provide Coq types for integer

and FP values, and Coq functions for the basic arithmetic and

logical operations, for conversions between these types, and

for comparisons. The CompCert semantics map C language

constructs to these basic operations, making fully precise a

number of points that the C standards (ISO C 90, 99, and 2011)

leave to the discretion of the implementation. For example,

the C standards do not specify the precision and range of

the float and double types; CompCert C maps them to

IEEE-754 binary32 and binary64 numbers, respectively.

Likewise, C does not specify the precision of intermediate

results during expression evaluation, requiring only that each

FP operation is evaluated with a precision greater or equal

to that of each operand; CompCert specifies that all inter-

mediate results are computed in double precision. Finally,

the C standards allow the compiler to “contract” several FP

operations, such as a multiplication and an addition, in a single

operation, such as FMA; the CompCert semantics disallow this

contraction.1

These choices of implementation are somewhat arbitrary,

but they provide programmers with a completely specified,

easy-to-understand model of FP arithmetic, which is guar-

anteed to be implemented faithfully by the compiler. For

example, as a consequence of this choice of C semantics and of

the semantic preservation theorem, the x86 code generator of

CompCert is guaranteed not to generate x87 FP instructions

(which operate in extended precision and cannot implement

IEEE-754 double precision exactly), generating SSE2 “scalar

double” operations instead.

In early versions of CompCert (up to and including 1.11),

the formalization of FP arithmetic is, however, less complete

and less satisfactory than that of integer arithmetic. The Int

library defines machine integers and their operations in a fully

constructive manner, as Coq mathematical integers (type Z)

modulo 232. In turn, Coq’s mathematical integers are defined

from first principles, essentially as lists of bits plus a sign. As a

consequence of these constructive definitions, all the algebraic

identities over machine integers used to justify optimizations

and code generation idioms are proved correct in Coq, such

as the equivalence between left-shift by n ≥ 0 bits and

multiplication by 2n.

In contrast, in early versions of CompCert, the Float

library was not constructed, but only axiomatized: the type of

FP numbers is an abstract type, the arithmetic operations are

just declared as functions but not realized, and the algebraic

identities exploited during code generation are not proved to be

true, but only asserted as axioms. (Section V-B shows exam-

ples of these identities.) Consequently, conformance to IEEE-

754 could not be guaranteed, and the validity of the axioms

could not be machine-checked. Moreover, this introduced a

regrettable dependency on the host platform (the platform that

runs the CompCert compiler), as we now explain.

The Int and Float Coq libraries are used not only to

give semantics to the CompCert languages, modeling run-

time computations, but also to specify the CompCert passes

that perform numerical computations at compile-time. For

instance, the constant propagation pass transforms the expres-

sion 2.0 * 3.0 into the constant 6.0 obtained by evaluat-

ing Float.mul(2.0,3.0) at compile-time. All the verified

passes of the CompCert compiler are specified in executable

style, as Coq recursive functions, from which an executable

compiler is automatically generated by Coq’s extraction mech-

anism, which produces equivalent OCaml code that is then

compiled to an executable. For a fully-constructive library such

as Int, this process produces an implementation of machine

integers that is provably correct and entirely independent from

the host platform, and can therefore safely be used during

compilation.2

1On target platforms that support them, CompCert makes FMA instructions
available as compiler built-in functions, but they must be explicitly used by
the programmer.

2This is similar in spirit to GCC’s use of exact, GMP-based integer
arithmetic during compilation, to avoid dependencies on the integer types
of its host platform.

In contrast, for an axiomatized library such as the early

versions of Float, there is no other choice than to map FP

operations of the library onto those of the host, namely the

FP operations provided by OCaml. However, OCaml’s FP

arithmetic is not guaranteed to implement IEEE-754 double

precision: on the x86 architecture running in 32-bit mode,

OCaml compiles FP operations to x87 machine instructions,

resulting in excess precision and double-rounding issues.

Likewise, conversion of decimal FP literals to binary32 or

binary64 during lexing and parsing was achieved by calling

into the corresponding OCaml library functions, which then

call into the strtod and strtof C library functions, which

are known to produce incorrectly-rounded results in several C

standard libraries.

The discussion above points to a strong need for a fully-

constructive Coq formalization of IEEE-754 arithmetic, pro-

viding implementations of FP arithmetic and conversions that

are proved correct against the IEEE-754 standard, and can be

invoked during compilation to perform constant propagation

and other optimizations without being dependent on the host

platform. We now describe how we extended the Flocq library

to reach these goals.

IV. A BIT-LEVEL COQ FORMALIZATION OF IEEE-754

BINARY FLOATING-POINT ARITHMETIC

Flocq (Floats for Coq) is a formalization for the Coq

system [8]. It provides a comprehensive library of theorems

on a multi-radix multi-precision arithmetic. In particular, it

encompasses radix-2 and 10 arithmetics, all the standard

rounding modes, and it supports fixed- and floating-point

arithmetics. The latter comes in two flavors depending on

whether underflow is gradual or abrupt. The core of Flocq does

not comply with IEEE-754 though, as it only sees FP numbers

as subsets of real numbers, that is, it neither distinguishes

the sign of zero nor handles special values. We therefore

had to extend it to fully support IEEE-754 binary arithmetic.

Moreover, this extension had to come with some effective

computability so that it could be used in CompCert.

A. Formats and Numbers

Binary FP data with numeric values can be seen as rational

numbers m · 2e, that is, pairs of integers (m, e). This is

the generic representation that Flocq manipulates. Support for

exceptional values is built upon this representation by using a

dependent sum.

Inductive binary_float :=

| B754_zero : bool -> binary_float

| B754_infinity : bool -> binary_float

| B754_nan : binary_float

| B754_finite : forall (s : bool) (m : positive)

(e : Z), bounded m e = true -> binary_float.

The above Coq code says that a value of type

binary_float can be obtained in four different ways (de-

pending on whether one wants a zero, an infinity, a NaN, or a

finite number), and that, for instance, to build a finite number,

one has to provide a boolean s, a positive integer m, an integer

e, and a proof of the property bounded m e = true.

This property ensures that both m and e are integers that

fit into the represented format. This format is described by

two variables (precision and exponent range) that are implicit

in the above definition. By setting these variables later, one

gets specific instances of binary_float, for instance the

traditional formats binary32 and binary64. The bounded

predicate also checks that m is normalized whenever e is not

the minimal exponent. This constraint does not come from the

IEEE-754 standard: any element of a FP cohort could be used,

but it helps in some proofs to know that this element is unique.

In addition to finite numbers (both normal and subnormal),

the binary_float type also supports signed zeros and signed

infinities. Notice that there is a single datum NaN though

and no way to distinguish between the numerous bit-level

encodings the IEEE-754 standard mandates. We chose to

abstract NaNs because the IEEE-754 standard underspecifies

what happens to their sign and their payload. By ignoring

them, we get a data type that encompasses all the compliant

architectures. Note that this introduces an inconsistency with

the actual architecture: if a program were to create a NaN

by an operation between two constants (say 1.0 / 0.0) and

test the non-exponent bits of its encoding, CompCert would

presumably optimize the program incorrectly.

The function B2R converts a binary_float value to a real

number. For finite values, it returns (−1)s×m×2e. Otherwise

it returns zero. The sign of a value can be obtained by applying

the Bsign function.

B. Executable Operations

Once the types are defined, the next step is to implement FP

operators and prove their usual properties. An operator takes

one or more binary_float inputs and a rounding mode,

which tells which FP value to choose when the infinitely-

precise result cannot be represented. The code of these op-

erators always has the same structure. First, they perform a

pattern matching on the inputs and handle all the special cases.

Only finite numbers are left.

There are two different approaches for defining arithmetic

operations. The first one is to have a round function that

takes a rounding mode and a real number and return the

closest FP number (according to the rounding mode m). For

instance, the sum of two finite FP numbers can be defined

as a⊕ b = round(m, B2R(a)+ B2R(b)), assuming it does not

overflow. The upside is that this operation trivially matches the

IEEE-754 standard, since that is the way the standard defines

arithmetic operations. The downside is that it depends on an

abstract addition and an abstract rounding function, and thus

it does not carry any computable content. As such, it cannot

be used in a compiler that needs to perform FP operations to

propagate constant values. This approach is used in the Pff [7]

library and in the Flocq core library [8].

The second approach is to define arithmetic operators that

actually perform computations on integers to construct a FP

result. This time, the code of these operators can be used by a

compiler for emulating FP operations, which is what we want.

The downside is that, not only are these functions complicated

to write, but there is no longer any guarantee that they are

compliant with the IEEE-754 standard. So one also has to

formally prove such theorems. This approach is used in the

FP formalization for ACL2 [5].

As done in HOL Light [27], [6], we have mixed both

approaches for our purpose: the second one offers effective

computability, while stating and proving that the first one is

equivalent provides concise specifications for our operations.

Currently supported operations are opposite, addition, sub-

traction, multiplication, division, and square root. Since other

operations like FMA, remainder, or square root are standard

library functions, they are not needed in our compiler for-

malization, as there are no specific inlining optimizations for

them. As an example of our approach, here is the correctness

theorem for the FP multiplication Bmult.

Theorem 2 (Bmult correct) Given x and y two

binary_float numbers, a rounding mode m, and

denoting round(m, B2R(x)× B2R(y)) by z, we have

B2R(Bmult(m,x, y)) = z if |z| < 2E ,

Bmult(m,x, y) =
overflow(m, Bsign(x)× Bsign(y)) otherwise.

Note that Flocq’s round function returns a real number that

would be representable by a FP number if the format had no

upper bound on the exponents. In particular, if the product

overflows, then z is a number larger than the largest repre-

sentable FP number (1−2−p) ·2E . In that case, the overflow

function is used to select the proper result depending on the

rounding mode (either an infinity or the largest representable

number) according to the IEEE-754 standard.

Notice that the theorem works even for exceptional inputs

since B2R maps them to zero. This makes it a bit simpler to

apply. This simplicity is even more sensible for the square root,

since it is proved to never overflow. Moreover, Coq’s square

root is a total function that returns zero for negative inputs,

while the FP operator Bsqrt returns NaN. So the input x does

not even have to be nonnegative for the theorem to hold.

Theorem 3 (Bsqrt correct) Given x a binary_float

number and m a rounding mode, we have

B2R(Bsqrt(m,x)) = round

�

m,
p

B2R(x)
�

.

These correctness theorems specify fully only the case when

both inputs of the operators are finite numbers. Indeed this is

the difficult case. When one or both inputs are exceptional,

no theorems are needed since one can simply execute the

operators to recover their values.

C. Bit-Level Representation

Finally, the last part needed to build a compiler is the

ability to go from and to the representation of FP numbers

as integer words. We provide two functions for this purpose

and a few theorems about them. Again, it is important that

these functions are effectively computable.

The binary_float_of_bits function takes an integer,

splits it into the three parts of a FP datum, looks whether the

biased exponent is minimal (meaning the number is zero or

subnormal), maximal (meaning infinity or NaN), or in between

(meaning a normal number with an implicit bit), and con-

structs the resulting FP number of type binary_float. The

bits_of_binary_float performs the converse operation.

Note that it always returns the same NaN (all bits set to 1,

except for the sign bit).

Both functions have been proved to be inverse of each

other (except for NaNs) for bounded integers. This property

also guarantees that we did not get these conversion functions

too wrong. Indeed, it ensures that all the bits of the memory

representation are accounted for and that there is no overlap

between the three fields of the binary representation.

V. A VERIFIED COMPILER FOR FLOATING-POINT

COMPUTATIONS

We integrated the Coq formalization of IEEE-754 arithmetic

described in Section IV into the CompCert compiler, version

1.12, effectively replacing the axiomatization of FP arithmetic

used in earlier versions (see Section III) by a provably-correct,

executable implementation.

As a first benefit, we obtain more precise semantic specifi-

cations for the source and target languages of CompCert. The

semantics for the source CompCert C language now guarantee

that FP arithmetic is performed as prescribed by IEEE-754, a

guarantee that programmers can rely on. Symmetrically, the

semantics for the target assembly languages (ARM, PowerPC,

x86) now require that the hardware implements IEEE-754

correctly. Two of CompCert’s target architectures have sev-

eral FP instruction sets, with different characteristics. Our

semantics only model the instructions actually generated by

CompCert: for ARM, the scalar VFD instruction set, omitting

vector instructions; for x86, the scalar SSE2 instruction set,

leaving aside vector instructions and x87 extended-precision

instructions.

As another benefit of building on a Coq formalization of

IEEE-754 arithmetic, we can now prove, as Coq theorems,

the axioms about the float abstract type previously used by

CompCert. As we explain in the following, these theorems

prove the correctness of CompCert’s compile-time handling

of FP arithmetic: first, FP computations performed at compile-

time by the compiler (such as FP literal parsing or constant

propagation); second, the code generation strategies used to

implement C’s FP operations in terms of the instructions

provided by the target architectures.

A. Verifying Compile-Time Computations

The CompCert compiler performs FP computations at dif-

ferent stages of compilation: (1) parsing of FP literals, (2)

the constant propagation optimization, and (3) conversion of

FP numbers to their bit-level representation when generating

the final executable code. For conducting these operations, we

need an implementation of FP arithmetic that is proved correct

in Coq, executable via extraction from Coq to OCaml, and

reasonably efficient. As shown in Section IV, our extension

to the Flocq library provides such an implementation. In

particular, the bits_of_binary_float function described

in Section IV-C directly answers usage (3) above. We now

discuss the use of Flocq for purposes (1) and (2).

Constant propagation is a basic but important optimization

in compilers. It consists in evaluating, at compile-time, arith-

metic and logical operations whose arguments can be statically

determined. For instance, the Fast-Two-Sum example of the

introduction is reduced to the printing of a single constant;

no FP operations are performed by the executable code. For

another example, consider the following C code fragment:

inline double f(double x) {

if (x < 1.0) return 1.0; else return 1.0 / x;

}

double g(void) {

return f(3.0);

}

Combining constant propagation with function

inlining, the body of function g is optimized into

return 0x1.5555555555555p-2. Not only the division

1.0 / x but also the conditional statement x < 1.0 have

been evaluated at compile-time. These evaluations are

performed by the executable operations provided by the Flocq

library, making them independent from the FP arithmetic of

the host platform running the compiler, and guaranteeing that

the constant propagation optimization preserves the semantics

of the source program.3

The evaluation of FP literals is delicate: literals are often

written in decimal, requiring nontrivial conversion to IEEE-

754 binary format; moreover, correct rounding must be guaran-

teed [28]. For example, until recently, the strtod and strtof

functions of the GNU C standard library incorrectly rounded

the result in some corner cases.4 To avoid these pitfalls, we

use a simple but correct Flocq-based algorithm for evaluating

these literals.

In C, a FP literal consists of an integral part, a fractional

part, an exponent part, and a precision suffix (which indicates

at which precision the literal should be evaluated). Each

of these parts can be omitted, in which case 0 is used as

default value for the first three parts. (This operation is done

in an early stage of parsing in our compiler.) The integral

and fractional parts may be written in either decimal or

hexadecimal notation; the use of hexadecimal (in both parts)

is indicated if the integral part begins with the prefix “0x”.

The exponent is given as a power of 2 if hexadecimal is used

3The CompCert C semantics gives programmers no way to change the FP
rounding mode during program execution, therefore guaranteeing that all FP
arithmetic rounds to nearest even. Programs that need other rounding modes
fall outside the perimeter of CompCert’s semantic preservation results. They
can, however, be supported via a compiler option, -ffloat-const-prop
0, which turns FP constant propagation off.

4Bug 3479 - Incorrect rounding in strtod(), http://sourceware.org/bugzilla/
show bug.cgi?id=3479

or as a power of 10 if decimal is used. To summarize, a literal

number always has the form I.F× bE with b = 2 or b = 10.

The first part of our algorithm consists in shifting the point

to the right, while modifying the exponent in order to transfer

the fractional part F into the integral part I. Then, it parses

both the exponent and the new integral part as arbitrary-

precision integers. The last part consists in actually evaluating

the FP number, using Flocq with the precision specified by

the precision suffix. When E ≥ 0, we compute I × bE using

exact integer arithmetic, then round the result to the nearest

representable FP number. When E < 0, we first compute b−E

using exact integer arithmetic, then perform the FP division

◦(I/b−E), using the proved division of Flocq. Notice that,

since Flocq formalizes a multi-precision arithmetic, numbers

I and b-E do not have to fit into the target format; the division

can cope with arbitrarily large numbers.

It is clear that the result is evaluated as in the reals

before being rounded at the very last step. We believe this

implementation is one of the simplest one could give, and we

would use it as a specification to a more complicated algorithm

if better performance is needed.

B. Verifying Code Generation for Floating-Point Operations

Most FP operations of the C language map directly to

hardware-implemented instructions of the target platforms.

However, some operations, such as certain comparisons and

conversions between integers and FP numbers, are not directly

supported by some target platforms, forcing the compiler to

implement these operations by sometimes convoluted combi-

nations of other instructions. The correctness of these code

generation strategies depends on the validity of algebraic

identities over FP operations, identities that we were able to

verify in Coq using the theorems provided by Flocq.

A first example is FP comparisons on the PowerPC ar-

chitecture. The PowerPC provides an fcmp instruction that

produces 4 bits of output: “less than”, “equal”, “greater”,

and “uncomparable”, and conditional branch instructions that

test any one of these bits. To compile a large inequality test

such as “less than or equal”, CompCert produces code that

performs the logical “or” of the “less than” and “equal” bits,

then conditionally branches on the resulting bit. Semantically,

this is justified by the identity (x ≤ y) ≡ (x < y) ∨ (x = y),
which holds for any two FP numbers x and y. Note that, even

if two NaNs are equal from the mathematical point of view

of Coq, the comparison operators defined by the compiler still

know that NaNs shall be unordered [3].

Another example is conversions between integers and FP

numbers, which come in 4 variants, depending on the direction

of the conversion (from an integer or to an integer) and on the

type of the integer: either signed, in the range [−231, 231),
or unsigned, in the range [0, 232). Of the 3 CompCert target

platforms, only ARM provides hardware implementations of

all 4 conversions. The x86-SSE2 instruction set only provides

conversions to and from signed integers, requiring the un-

signed integer conversions to be implemented by case analysis:

if n is an unsigned 32-bit integer variable, the C conversion

(double)n is compiled like the C conditional expression

n < 0x80000000

? (double)((int) n)

: (double)((int)(n - 0x80000000)) + 0x1.p31

Likewise, if d is a binary64 variable, the C conversion

(unsigned int)d is compiled like

d < 0x1.p31 ? (int) d

: (int)(d - 0x1.p31) + 0x8000000

We proved the correctness of this code generation strategy,

using the fact that all 32-bit signed and unsigned integers are

exactly representable as binary64, and that conversions from

FP numbers to integers are undefined if the argument falls

outside the range of the destination integer type.

The PowerPC 32-bit architecture is even more problem-

atic, as the only conversion it implements in hardware is

binary64 to signed integer. Conversion to an unsigned integer

is implemented as shown above. Conversions from integers

to FP numbers are synthesized via bit-level manipulations

over the binary64 numbers, as suggested by IBM [29]. If

n is an unsigned 32-bit integer, the conversion (double)n is

compiled as

fmake(0x43000000, n) - fmake(0x43000000, 0)

where fmake(hi,lo) is a compiler built-in function that

returns a double whose 64-bit binary representation is the

concatenation of the 32 bits of integer hi followed by the 32

bits of integer lo. If, instead, n is a signed integer, (double)n

is compiled as

fmake(0x43000000, n ˆ 0x80000000)

- fmake(0x43000000, 0x80000000)

The correctness of this implementation technique is far from

obvious. Taking the unsigned case as example, we first note

that fmake(0x43000000, n) is equal to 252 + n, and that

fmake(0x43000000, 0) is 252. We then prove that the

binary64 subtraction between these two numbers is exact and

produces the binary64 number equal to n. Mechanizing this

proof in Coq brings much confidence in this implementation.

The discussion above focuses on conversions between 32-

bit integers and binary64 FP numbers, as these are the only

conversions between integers and FP numbers used by Comp-

Cert’s implementation and formal semantics. Conversions to

and from binary32 FP numbers go through an intermediate

binary64 result, with no risk of double rounding errors.

Support for 64-bit integers is being considered for future ver-

sions of CompCert. Synthesizing conversions between 64-bit

integers and binary64 FP numbers from the 32-bit conversion

instructions provided by the target processors raises interesting

issues that deserve further formal verification.

VI. CONCLUSIONS

In this article, we have presented a formally-verified com-

piler that supports FP computations. Producing such a com-

piler required us to define the FP semantics for the C lan-

guage and for the target architectures, and to prove that the

compiler preserves the semantics between a C program and

the produced executable code. Flocq has been extended with

a formalization of the IEEE-754 standard; this formalization

is used by CompCert to define the semantics, parse literal

FP constants, and perform constant propagation at compile-

time. This development has been integrated into version 1.12

of CompCert available at http://compcert.inria.fr/. This work

required to add about 3000 lines of new Coq proofs to both

CompCert and Flocq.

This approach gives a correct and predictable compiler that

conforms to the IEEE-754 standard. This means that, among

the several possibilities allowed by the ISO C standard, we

have chosen a single way to compile and we have formally

proved its correctness. This compilation choice can be dis-

cussed: for example all intermediate results are computed in

double precision, therefore with (usually) less accuracy than

with extended registers. The first reason is that this is sorely

needed to be able to prove algorithms or programs. The second

reason is that we favored reproducibility over possible higher

accuracy. The actual interpretation of FP operations can be

seen in the Float module of CompCert; one does not have

to wade through all the optimization passes to understand

what happens to them, since their semantics is provably

preserved. Another advantage is that having strict semantics

paves the way to simpler, more precise, and even verified,

static analyzers.

For the sake of completeness, one should note that Comp-

Cert’s formal semantics does not support certain features of the

IEEE-754 standard. First, CompCert does not know about di-

rected rounding modes and assumes that all the FP operations

are performed with the default rounding mode. As a conse-

quence, on architectures that have dynamic rounding modes,

changing the mode prevents CompCert’s semantics from being

preserved. For instance, constant propagation might give a

different result from actual execution. CompCert could be

extended to support a dynamic mode, e.g. by representing it

as a pseudo global variable. Constant propagation would then

only happen if either the rounding mode is statically known,

or if the result would be the same whatever the mode.

Another peculiarity of CompCert is that all the intermediate

computations are performed in double precision, as allowed

by the C standard. It is still possible to achieve binary32

computations by following each operation by a store to a

binary32 variable. Double rounding occurs but is known to

produce the correctly-rounded result [30].

The integration of Flocq and CompCert opens the way to

adding more optimizations specific to FP arithmetic, and to

prove them correct. FP identities such as x − 0.0 ≡ x or

x×2 ≡ x+x or x/2n ≡ x×2−n can be exploited to generate

shorter or cheaper instruction sequences. For the semantic

preservation theorem to hold, however, only identities that hold

for all representable FP numbers can be used, and there are

few of them. Other tempting simplifications are incorrect for

some values of their arguments: for example, x + 0.0 ≡ x
does not hold if x = −0.0, and Brisebarre et al’s technique to

replace a FP division by a constant with a multiplication and

an FMA [31] is not always correct for subnormal arguments.

The only way to exploit these simplifications while preserving

semantics would be to apply them conditionally, based on the

results of a static analysis (such as FP interval analysis) that

can exclude the problematic cases.

The problem is even more acute for aggressive loop op-

timizations such as vectorization, which often entail reasso-

ciating FP operations, and cannot be guaranteed to preserve

semantics except in very special cases. We conclude that the

compiler is probably the wrong place to perform aggressive

program transformations over FP operations, because it lacks

much of the information necessary for this endeavor. Auto-

matic code generation tools, however, are in a more favorable

position to preserve or improve precision by reassociation and

other aggressive transformations [32].

REFERENCES

[1] P. H. Sterbenz, Floating point computation. Prentice Hall, 1974.
[2] T. J. Dekker, “A floating point technique for extending the available

precision,” Numerische Mathematik, vol. 18, no. 3, pp. 224–242, 1971.
[3] Microprocessor Standards Subcommittee, “IEEE Standard for Floating-

Point Arithmetic,” IEEE Std. 754-2008, pp. 1–58, Aug. 2008.
[4] V. A. Carreño and P. S. Miner, “Specification of the IEEE-854 floating-

point standard in HOL and PVS,” in HOL95: 8th International Workshop

on Higher-Order Logic Theorem Proving and Its Applications, Aspen
Grove, UT, Sep. 1995.

[5] D. M. Russinoff, “A mechanically checked proof of IEEE compliance
of the floating point multiplication, division and square root algorithms
of the AMD-K7 processor,” LMS Journal of Computation and Mathe-

matics, vol. 1, pp. 148–200, 1998.
[6] J. Harrison, “Formal verification of floating point trigonometric func-

tions,” in 3rd International Conference on Formal Methods in Computer-

Aided Design, Austin, Texas, 2000, pp. 217–233.
[7] S. Boldo, “Preuves formelles en arithmétiques à virgule flottante,” Ph.D.

dissertation, École Normale Supérieure de Lyon, 2004.
[8] S. Boldo and G. Melquiond, “Flocq: A unified library for proving

floating-point algorithms in Coq,” in 20th IEEE Symposium on Computer

Arithmetic, E. Antelo, D. Hough, and P. Ienne, Eds., Tübingen, Germany,
2011, pp. 243–252.

[9] D. Monniaux, “The pitfalls of verifying floating-point computations,”
TOPLAS, vol. 30, no. 3, p. 12, May 2008.

[10] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-

Point Arithmetic. Birkhäuser, 2010.
[11] ISO, “International standard ISO/IEC 9899:2011, Programming lan-

guages – C,” 2011.
[12] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding

bugs in C compilers,” in 32nd ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2011. ACM Press,
2011, pp. 283–294.

[13] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival, “The ASTRÉE analyzer,” in ESOP, ser. Lecture Notes in
Computer Science, no. 3444, 2005, pp. 21–30.

[14] D. Monniaux, “Analyse statique : de la théorie à la pratique,” Habilitation
to direct research, Université Joseph Fourier, Grenoble, France, Jun.
2009.

[15] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of FLUCTUAT on safety-critical avionics
software.” in FMICS, ser. LNCS, vol. 5825. Springer, 2009, pp. 53–
69.

[16] G. T. Leavens, “Not a number of floating point problems,” Journal of

Object Technology, vol. 5, no. 2, pp. 75–83, 2006.
[17] S. Boldo and J.-C. Filliâtre, “Formal Verification of Floating-Point Pro-

grams,” in 18th IEEE International Symposium on Computer Arithmetic,
Montpellier, France, June 2007, pp. 187–194.

[18] A. Ayad and C. Marché, “Multi-prover verification of floating-point pro-
grams,” in 5th International Joint Conference on Automated Reasoning,
ser. Lecture Notes in Artificial Intelligence, J. Giesl and R. Hähnle, Eds.
Edinburgh, Scotland: Springer, Jul. 2010.

[19] S. Boldo and T. M. T. Nguyen, “Proofs of numerical programs when the
compiler optimizes,” Innovations in Systems and Software Engineering,
vol. 7, pp. 151–160, 2011.

[20] T. M. T. Nguyen and C. Marché, “Hardware-dependent proofs of
numerical programs,” in Certified Programs and Proofs, ser. Lecture
Notes in Computer Science, J.-P. Jouannaud and Z. Shao, Eds. Springer,
Dec. 2011.

[21] R. Milner and R. Weyhrauch, “Proving compiler correctness in a
mechanized logic,” in 7th Annual Machine Intelligence Workshop, ser.
Machine Intelligence, B. Meltzer and D. Michie, Eds., vol. 7. Edinburgh
University Press, 1972, pp. 51–72.

[22] J. S. Moore, “A mechanically verified language implementation,” Jour-

nal of Automated Reasoning, vol. 5, no. 4, pp. 461–492, 1989.
[23] G. Li, S. Owens, and K. Slind, “Structure of a proof-producing compiler

for a subset of higher order logic,” in 16th European conference on

Programming, ser. ESOP’07. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 205–219.

[24] M. O. Myreen, “Formal verification of machine-code programs,” Ph.D.
dissertation, University of Cambridge, 2008.

[25] X. Leroy, “Formal verification of a realistic compiler,” Communications

of the ACM, vol. 52, no. 7, pp. 107–115, 2009.
[26] J. Nickolls and W. Dally, “The GPU computing era,” IEEE Micro,

vol. 30, no. 2, pp. 56–69, 2010.
[27] J. Harrison, “A machine-checked theory of floating point arithmetic,” in

Theorem Proving in Higher Order Logics: 12th International Confer-

ence, TPHOLs’99, ser. Lecture Notes in Computer Science, Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, Eds., vol. 1690.
Nice, France: Springer-Verlag, 1999, pp. 113–130.

[28] W. D. Clinger, “How to read floating-point numbers accurately,” in
Programming Language Design and Implementation (PLDI’90). ACM,
1990, pp. 92–101.

[29] IBM, The PowerPC Compiler Writer’s Guide. Warthman Associates,
1996.

[30] S. A. Figueroa, “When is double rounding innocuous?” SIGNUM

Newsletter, vol. 30, no. 3, pp. 21–26, 1995.
[31] N. Brisebarre, J.-M. Muller, and S. K. Raina, “Accelerating correctly

rounded floating-point division when the divisor is known in advance,”
IEEE Trans. Computers, vol. 53, no. 8, pp. 1069–1072, 2004.

[32] A. Ioualalen and M. Martel, “A new abstract domain for the representa-
tion of mathematically equivalent expressions,” in Static Analysis - 19th

International Symposium, SAS 2012, ser. Lecture Notes in Computer
Science, vol. 7460. Springer, 2012, pp. 75–93.

