
THE EASST NEWSLETTER

Maintaining large software distributions:
new challenges from the FOSS era

Roberto Di Cosmo *and Berke Durak **and Xavier Leroy **and Fabio Mancinelli *and J érôme
Vouillon *

*PPS, University of Paris 7,Firstname.Lastname@pps.jussieu.fr
**INRIA Rocquencourt,Firstname.Lastname@inria.fr

Abstract. In the mainstream adoption of free and open source software (FOSS),distribution
editorsplay a crucial role: they package, integrate and distribute a wide variety of software,
written in a variety of languages, for a variety of purposes of unprecedented breadth.
Ensuring the quality of a FOSS distribution is a technical and engineering challenge, owing to
the size and complexity of these distributions (tens of thousands of software packages). A number
of original topics for research arise from this challenge. This paper is a gentle introduction to this
new research area, and strives to clearly and formally identify many of the desirable properties
that must be enjoyed by these distributions to ensure an acceptable quality level.

Keywords: Open source software, dependency management, EDOS project

1 Introduction

Managing large software systems has always been a stimulating challenge for the research field in Com-
puter Science known as Software Engineering. Many seminal advances by founding fathers of Comp.
Sci. were prompted by this challenge (see the book “Software Pioneers”, edited by M. Broy and E.
Denert [BD02], for an overview). Concepts such as structured programming, abstract data types, modu-
larization, object orientation, design patterns or modeling languages (unified or not) [Szy97, GHJV94],
were all introduced with the clear objective of simplifying the task not only of the programmer, but of
the software engineer as well.
Nevertheless, in the recent years, two related phenomena: the explosion of Internet connectivity and

the mainstream adoption of free and open source software (FOSS), have deeply changed the scenarii that
today’s software engineers face. The traditional organized, safe world where software is developed from
specifications in a fully centralized way is no longer the only game in town. We see more and more
complex software systems that are assembled from loosely coupled sources developed by programming
teams not belonging to any single company, cooperating only through fast Internet connections. The
availability of code distributed under FOSS licences makes it possible to reuse such code without formal
agreements among companies, and without any form of central authority that coordinates this burgeoning

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

activity.
This has led to the appearance of the so-calleddistribution editors, who try to offer some kind of

reference viewpoint over the breathtaking variety of FOSS software available today: they take care of
packaging, integrating and distributing tens of thousands of software packages, very few being developed
in-house and almost all coming from independent developers. We believe that the role of distribution
editors is deeply novel: no comparable task can be found in the traditional software development and
distribution model.
This unique position of a FOSS distribution editor means that many of the standard, often unstated

assumptions made for other complex software systems no longer hold: there is no common program-
ming language, no common object model, no common component model, no central authority, neither
technical nor commercial1.
Consequently, most FOSS distribution today simply rely on the general notion of softwarepackage2: a

bundle of files containing data, programs, and configuration information, with some metadata attached.
Most of the metadata information deals withdependencies: the relationships with other packages that
may be needed in order to run or install a given package, or that conflict with its presence on the system.
We now give a general description of a typical FOSS process. In figure 1 we have an imaginary project,

called foo , handled by two developers, Alice Torvalds and Bob Dupont, who use a common CVS or
Subversion repository and associated facilities such as mailing lists at a typical FOSS development site
such as Sourceforge. Open source software is indeed developed asprojects, which may group one or
more developers. Projects can be characterized by a common goal and the use of a common infrastruc-
ture, such as a common version control repository, bug tracking system, or mailing lists. For instance, the
Firefox browser, the Linux kernel, the KDE and Gnome desktop environments or the GNU C compiler
are amongst the largest FOSS projects and have their own infrastructures. Of course, even small bits of
software likesysstat consitute projects, even if they are developed by only one author without the
use of a version control system. A given project may lead to one or moreproducts. For instance, the
KDE project leads to many products, from thekonqueror browser to the desktop environment itself.
Each FOSS product may then be included in a distribution. In our example, the projectfoo delivers the
productsgfoo , kfoo andfoo-utils . A port is the inclusion of a product into a distribution by one
or moremaintainersof that distribution. The maintainers must:

• Import and regularly track the source code for the project into the distribution’s own version control
or storage system (this is depicted in figure 1 by a switch controlling the flow of information from
the upstream to the version control system of the distribution).

• Ensure that the dependencies of the product are already included in the distribution.

• Write or include patches to adapt the program to the distribution.

• Write installation, upgrading, configuration and removal scripts.

• Write metadata and control files.
1In the world of Windows-based personal computing, for example, the company controlling Windows can actually impose

to the ISV the usage of its API and other rules.
2Not to be mistaken for the software organizational unit present in many modern programming languages.

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

Figure 1: Major flow of information in a FOSS project.

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

• Communicate with the upstream developers by forwarding them bug reports, patches or feature
requests.

We see that the job of maintainers is substantial for which attempts to automate some of those tasks, such
as automated dependency extraction tools [Tuu03, TT01] or getting source code updates from developers
[Ekl05] are no substitute. In our example, we have a Debian-based distribution 1, with two maintainers
for foo , and an RPM-based distribution 2 with one maintainer. A given product will be divided into
one or moreunits, which will be compiled for the differentarchitecturessupported by the distribution (a
given unit may not be available on all architectures) and bundled aspackages. The metadata and control
files specify how the product is divided into units, how each unit is to be compiled and packaged and
on which architectures, as well as the dependency information, the textual description of the units, their
importance, and classification tags. These packages are then automatically downloaded (as well as their
dependencies) by the package management software (for instance,apt or urpmi) of the users of that
distribution. Some users may prefer to download directly the sources from the developers, in which case
they will typically execute a sequence of commands such as./configure && make && make
install to compile and install that software. However, they then lose the many benefits of a package
management system, such as tracking of the files installed by the package, automated installation of the
dependencies, local modifications and installation scripts.
We now turn to the problem of ensuring the quality of a distribution. This problem is the focus of

the European FP6 project EDOS (Environment for the development and Distribution of Open Source
software). This problem can therefore be divided into three main tasks:

Upstream tracking makes sure that the package in the distribution closely follows the evolution of
the software development, almost always carried over by some team outside the control of the
distributor.

Testing and integration makes sure that the program performs as expected in combination with other
packages in the distribution. If not, bug reports need propagating to the upstream developer.

Dependency managementmakes sure that, in a distribution, packages can be installed and user in-
stallations can be upgraded when new versions of packages are produced, while respecting the
constraints imposed by the dependency metadata.

In this paper, we focus on the last task: dependency management. This task is surprisingly complex
[Tuu03, vdS04], owing to the large number of packages present in a typical distribution and to the com-
plexity and richness of their interdependencies. It is at the very heart of the research activity conducted
in workpackage 2 of the EDOS project.
More specifically, our focus is on the issues related to dependency management for large sets of soft-

ware packages, with a particular attention to what must be done to maintain consistency of a software
distribution on the repository side, as opposed to maintaining a set of packages installedon a client
machine.
This choice is justified by the following observation: maintaining consistency of a distribution of soft-

ware packages isfundamentalto ensure quality and scalability of current and future distributions; yet, it
is also aninvisible task, since the smooth working it ensures on the end user side tends to be considered

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

as normal and obvious as the smooth working of packet routing on the Internet. In other words, we are
tackling an essentialinfrastructureproblem that has long been ignored: while there are a wealth of client-
side tools to maintain a user installation (apt , urpmi , smart and many others [Sil04, Man05, Nie05]),
there is surprisingly little literature and publically available tools that address server-side requirements.
We found very little significant prior work in this area, despite it being critical to the success of FOSS in
the long term.
The paper is organised as follows. Section 2 contains a formal description of the main characteristics

of a software package found in the mainstream FOSS distributions, as far as dependency are concerned.
In Section 3 we identify and formally define three desirable properties of a distribution with respect
to dependency management. Section 4 discusses the feasibility of checking these properties. A few
empirical measurements are given in section 5, followed by conclusions in section 6.

2 Basic definitions

Every package management system [DG98, Bai97] takes into account the interrelationships among pack-
ages (to different extents). We will call these relationshipsrequirements. Several kinds of requirements
can be considered. The most common one is adependencyrequirement: in order to install packageP1,
it is necessary that packageP2 is installed as well. Less often, we findconflictrequirements: package P1

cannot coexist with package P2.
Some package management systems specialize these basic types of requirements by allowing to specify

the timeframeduring which the requirement must be satisfied. For example, it is customary to be able
to expresspre-dependencies, a kind of dependency stating that a packageP1 needs packageP2 to be
present on the systembeforeP1 can be installed [DG98].
In the following, we assume the distribution and the architecture are fixed. We will identify packages,

which are archive files containing metadata and installation scripts, with pairs of a unit and a version.

Definition 1 (Package, unit). A packageis a pair (u, v) whereu is a unit andv is a version. Units are
arbitrary strings, and we assume that versions are non-negative integers.

While the ordering over version strings as used in common OSS distributions is not discrete (i.e., for
any two version stringsv1 andv2 such thatv1 < v2, there existsv3 such thatv1 < v3 < v2), taking
integers as version numbers is justified for two reasons. First, any given repository will have a finite
number of packages. Second, only packages with the same unit will be compared.
For instance, if our Debian repository contains the versions2.15-6 , 2.16.1cvs20051117-1 and

2.16.1cvs20051206-1 of the unitbinutils , we may encode these versions respectively as0,1
and2, giving the packages(binutils, 0), (binutils, 1), and(binutils, 2).

Definition 2 (Repository). A repositoryis a tupleR = (P,D,C) whereP is a set of packages,D :
P → P(P(P)) is the dependency function3, andC ⊆ P × P is the conflict relation. The repository
must satisfy the following conditions:

• The relationC is symmetric, i.e.,(π1, π2) ∈ C if and only if(π2, π1) ∈ C for all π1, π2 ∈ P .

3We writeP(X) for the set of subsets ofX.

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

Figure 2: The repository of example 1.

• Two packages with the same unit but different versions conflict4, that is, if π1 = (u, v1) and
π2 = (u, v2) with v1 6= v2, then(π1, π2) ∈ C.

In a repositoryR = (P,D,C), the dependencies of each packagep are given byD(p) = {d1, . . . , dk}
which is a set of sets of packages, interpreted as follows. Ifp is to be installed, then all itsk dependencies
must be satisfied. Fordi to be satisfied, at least one of the packages ofdi must be available. In particular,
if one of thedi is the empty set, it will never be satisfied, and the packagep is not installable.

Example 1. Let R = (P,D,C) be the repository given by

P = {a, b, c, d, e, f, g, h, i, j}
D(a) =

{
{b}, {c, d}, {d, e}, {d, f}

}
D(b) =

{
{g}

}
D(c) =

{
{g, h, i}

}
D(d) =

{
{h, i}

}
D(e) = D(f) =

{
{j}

}
C = {(c, e), (e, c), (e, i), (i, e), (g, h), (h, g)}

wherea = (ua, 0), b = (ub, 0), c = (uc, 0) and so on. The repositoryR is represented in figure 2. For
the packagea to be installed, the following packages must be installed:b, eitherc or d, eitherd or e, and
eitherd or f . Packagesc ande, e andi, andg andh cannot be installed at the same time.

In computer science, dependencies are usuallyconjunctive, that is they are of the form

a → b1 ∧ b2 ∧ · · · ∧ bs

4This requirement is present in some package management systems, notably Debian’s, but not all. For instance, RPM-based
distributions allow simultaneous installation of several versions of the same unit, at least in principle.

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

wherea is the target andb1, b2, . . . are its prerequisites. This is the case inmake files, where all the
dependencies of a target must be built before building the target. Such dependency information can be
represented by a directed graph, and dependencies can be solved by the well-known topological sort
algorithm. Our dependencies are of a more complex kind, which we namedisjunctivedependencies.
Their general form is a conjunction of disjunctions:

a → (b1
1 ∨ · · · ∨ br1

1) ∧ · · · ∧ (b1
s ∨ · · · ∨ brs

s). (1)

For a to be installed, each term of the right-hand side of the implication 1 must be satisfied. In turn, the
termb1

i ∨ · · · ∨ bri
i when1 ≤ i ≤ s is satisfied when at least one of thebj

i with 1 ≤ j ≤ ri is satisfied. If
a is a package in our repository, we therefore have

D(a) = {{b1
1, . . . , b

r1
1 }, · · · , {b1

s, . . . , b
rs
s }}.

In particular, if one of the terms is empty (if∅ ∈ D(a)), thena cannot be satisfied. This side-effect
is useful for modeling repositories containing packages mentioning another packageb that is not in that
repository. Such a situation may occur because of an error in the metadata, because the packageb has
been removed, orb is in another repository, maybe for licensing reasons.
Concerning the relationC, two packagesπ1 = (u1, v1), π2 = (u2, v2) ∈ P conflict when(π1, π2) ∈ C.

Since conflicts are a function of presence and not of installation order, the relationC is symmetric.

Definition 3 (Installation). An installationof a repositoryR = (P,D,C) is a subset ofP , giving the
set of packages installed on a system. An installation ishealthywhen the following conditions hold:

• Abundance:Every package has what it needs. Formally, for everyπ ∈ I, and for every depen-
dencyd ∈ D(π) we haveI ∩ d 6= ∅.

• Peace:No two packages conflict. Formally,(I × I) ∩ C = ∅.

Definition 4 (Installability and co-installability). A packageπ of a repositoryR is installableif there
exists a healthy installationI such thatπ ∈ I. Similarly, a set of packagesΠ of R is co-installableif
there exists a healthy installationI such thatΠ ⊆ I.

Note that because of conflicts, every member of a setX ⊆ P may be installable without the setX
being co-installable.

Example 2. Assumea depends onb, c depends ond, andc andd conflict. Then, the set{a, b} is not
co-installable, despite each ofa andb being installable and not conflicting directly.

Definition 5 (Maximal co-installability). A setX of co-installable packages of a repositoryR is max-
imal if there is no other co-installable subsetX ′ of R that strictly containsX. We writemaxco(R) for
the family of all maximal co-installable subsets ofR.

Definition 6 (Dependency closure).Thedependency closure∆(Π) of a set of packageΠ of a repository
R is the smallest set of packages included inR that containsΠ and is closed under theimmediate
dependencyfunctionD : P(P) → P(P) defined as

D(Π) =
⋃
π∈Π

d∈D(π)

d.

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

Figure 3: The subrepository generated by packagec. The dependency closure is{c, g, h, i}.

In simpler words,∆(Π) containsΠ, then all packages that appear as immediate dependencies ofΠ,
then all packages that appear as immediate dependencies of immediate dependencies ofΠ, and so on.
Since the domain ofD is a complete lattice, andD is clearly a continuous function, we immediately get
(by Tarski’s theorem) that such a smallest set exists and can be actually computed as follows:

Proposition 1. The dependency closure∆(Π) of Π is:

∆(Π) =
⋃
n≥0

D
n(Π).

The notion of dependency closure is useful to extract the part of a repository that pertains to a package
or to a set of packages.

Definition 7 (Generated subrepository).Let R = (P,D,C) be a repository andΠ ⊆ P be a set of
packages. Thesubrepository generated byΠ is the repositoryR|Π = (P ′, D′, C ′) whose set of packages
is the dependency closure ofΠ and whose dependency and conflict relations are those ofR restricted to
that set of packages. More formally we haveP ′ = ∆(Π), D′ : P ′ → P(P(P ′)), π 7→ {d ∩ P ′ | d ∈
D(π)} andC ′ = C ∩ (P ′ × P ′).

Figure 3 shows the subrepository generated by the packagec of example 1. The dependency closure of
c is the set of package nodes of that subrepository.
We then have the following property, which allows to consider only the relevant subrepositories when

answering questions of installability.

Proposition 2 (Completeness of subrepositories).A packageπ is installable w.r.t.R if and only if it is
installable w.r.t.R|π. (Similarly for co-installability.)

3 Maintaining a package repository

The task of maintaining a package repository is difficult: the maintainance team must monitor the evo-
lution of thousand of packages over time, and address the error reports coming from different sources

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

(users, QA teams, developers, etc.). It is desirable to automate as much of this work as possible. Our
medium-term goal is to build tools that help distribution maintainers track dependency-related problems
in package repositories. We detail here some of the desirable properties of a repository. The first is
history-free, in that it applies to a given state of a repository.

Being trimmed We say that a repositoryR is trimmedwhen every package ofR is installable w.r.t.R.
The intuition behind this terminology is that a non-trimmed repository contains packages that cannot be
installed in any configuration. We call those packagesbroken. They behave as if they were not part of
the repository. It is obviously desirable that at any point in time, a repository is trimmed, that is, contains
no broken packages.

The next properties arehistory-sensitive, meaning that they take into account the evolution of the
repository over time. Due to this dependency on time, the precise formulation of these properties is
delicate. Just like history-free properties are relevant to users who install a distribution from scratch,
history-sensitive properties are relevant to users who upgrade an existing installation.

Monotonicity Let Rt be the repository at timet and consider a coinstallable set of packagesCt. Some
users can actually have packagesCt installed simultaneously on their system. These users have the
possibility of installing additional packages fromRt, resulting in a coinstallable set of packagesC ′

t.
These users can reasonably expect that they will be able to do so (extendCt into C ′

t) at any future time
t′, using the repositoryRt′ , which, beingnewer, is supposed to bebetterthan the oldRt.
Of course, users are ready to accept that inRt′ they will not get exactlyC ′

t, but possiblyC ′
t′ , where

some packages were updated to a greater version, and some others have been replaced as the result of
splitting into smaller packages or grouping into larger ones. But, clearly, it is not acceptable to evolve
Rt into Rt′ if Rt allows to install, say,apache together withsquid , while Rt′ does not.
We say that a repository history line ismonotoneif the freedomof a user to install packages is a

monotone function of time. WritingF (x,R) for the set of possible package sets inR that are a possible
replacement of packagex according to the metadata, monotonicity can be formally expressed as

Mon(R) = ∀t < t′. ∀P ∈ Con(Rt). ∃Q ∈ Con(Rt′). ∀x ∈ P. Q ∩ F (x,Rt′) 6= ∅

Upgradeability Another reasonable expectation of the user is to be able to upgrade a previously in-
stalled package to the most recent version (or even any more recent version) of this package that was
added to the repository since her latest installation. She is ready to accept that this upgrade will force the
installation of some new packages, the upgrade of some other packages, and the replacement of some sets
of package by other sets of packages, as the result of the reorganization of the structure of the packages.
She may even accept, in order to perform an important upgrade, to see some previously installed pack-

ages removed, as it happens when using all the meta package management tools available today.

We remark that these properties arenot interdefinable. We give here a proof of this assertion by
exhibiting example repositories showing this independence of the properties. For the first two cases,

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

consider three repositoriesR1, R2, R3 whose sets of packages areP1 = {(a, 1), (b, 1), (c, 1)}, P2 =
{(a, 1), (b, 1)}, P3 = {(a, 1), (a, 2), (b, 1)} with no conflicts nor dependencies among the version1
packages and a conflict among(a, 2) and(b, 1). Notice that at each momentt in time,Rt is trimmed.

1. A repository that stays trimmed over a period of time is not necessarily monotone, nor upgrade-
able. Since(c, 1) disappears between times1 and2, this step in the evolution does not preserve
monotonicity. Since(a, 2) has a new conflict (namely with(b, 1)) in R3, the evolution fromR2 to
R3 does not preserve upgradeability.

2. A repository that stays trimmed over a period of time and evolves in a monotone fashion is not
necessarily upgradeable. The evolution fromR2 to R3 above is monotone, each ofR2 andR3

is trimmed, but we fail upgradeability because there is no way of going from{(a, 1), (b, 1)} to
{(a, 2), (b, 1)} because of the conflict.

3. A repository that stays trimmed over a period of time and is upgradeable is not necessarily mono-
tone.

Consider repositoriesR1 andR2 with P1 = {(a, 1), (b, 1)} andP2 = {(a, 2), (b, 1)}. Assume
(a, 1) and (b, 1) are isolated packages, while(a, 2) conflicts with (b, 1). Now, a user having
installed all ofR1 and really willing to get(a, 2) can do it, but at the price of giving up(b, 1). This
evolution of the repository is therefore upgradeable but not monotone.

4. A repository that evolves in a monotone and upgradeable fashion is not necessarily trimmed at any
time: indeed, the monotonicity and upgradeability property only speak ofconsistentsubsets of a
repository, that cannot contain, by definition, any broken packages.

Consider for example repositoriesR1, R2 with P1 = {(a, 1)}, P2 = {(a, 1), (b, 1)}. Assume
(a, 1) and(b, 1) are broken because they depend on a missing package(c, 1). Here, the evolution
of R1 to R2 is trivially monotone and upgradeable, because there isnoconsistent subset ofR1 and
R2, and bothR1 andR2 are not trimmed because they contain broken packages.

The examples above to prove that the three properties are actually independent may seem contrived, but
are simplifications of real-world scenarii. For instance, example 3 can actually happen in the evolution
of real repositories, when for some reason the new version of a set of interrelated packages is only
partially migrated to the repository. Many packages are split into several packages to isolate architecture-
independent files, as in the Debian packagesswi-prolog andswi-prolog-doc . When performing
this split, it is quite natural to add a conflict inswi-prolog-doc against old, non-splitted versions of
swi-prolog . If the new version ofswi-prolog-doc slips into a real repository before the new,
splitted version ofswi-prolog , we are exactly in situation number 3 above.
Package developers seem aware of some of these issues: they actually do their best to ensure mono-

tonicity and upgradeability by trying to reduce as much as possible the usage of conflicts, and sometime
resorting to naming conventions for the packages when a radical change in the package happens, like in
the case ofxserver-common vs. xserver-common-v3 in Debian, as can be seen in the depen-
dencies forxserver-common .

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

Package: xserver-common
Conflicts: xbase (<< 3.3.2.3a-2), xsun-utils, xbase-clients (<< 3.3.6-1),

suidmanager (<< 0.50), configlet (<= 0.9.22),
xserver-3dlabs (<< 3.3.6-35), xserver-8514 (<< 3.3.6-35),
xserver-agx (<< 3.3.6-35), xserver-common-v3 (<< 3.3.6-35),
xserver-fbdev (<< 3.3.6-35), xserver-i128 (<< 3.3.6-35),
xserver-mach32 (<< 3.3.6-35), xserver-mach64 (<< 3.3.6-35),
xserver-mach8 (<< 3.3.6-35), xserver-mono (<< 3.3.6-35),
xserver-p9000 (<< 3.3.6-35), xserver-s3(<< 3.3.6-35),
xserver-s3v (<< 3.3.6-35), xserver-svga (<< 3.3.6-35),
xserver-tga (<< 3.3.6-35), xserver-vga16 (<< 3.3.6-35),
xserver-w32 (<< 3.3.6-35), xserver-xsun (<< 3.3.6-35),
xserver-xsun-mono (<< 3.3.6-35), xserver-xsun24 (<< 3.3.6-35),
xserver-rage128, xserver-sis

4 Algorithmic considerations

Our research objective within the EDOS project is to formally define the desirable properties of reposi-
tories stated in section 3 (and possibly other properties that will appear useful), and to develop efficient
algorithms to check these properties automatically.
It is really not evident that any of these problems are actually tractable in practice: due to the rich

language allowed to describe package dependencies in the mainstream FOSS distributions, even the
simplest problems (checking installability of a single package) may involve verifications over a large
number of other packages. During our first investigations of these problems, we have indeed already
proven the following complexity result.

Theorem 1 (Package installability is an NP-complete problem).Checking whether a single package
P can be installed, given a repositoryR, is NP-complete.

The full proof of this result will be published separately. It relies on a simple, polynomial-time reduction
of the 3SAT problem to the installability problem. Given an instance of 3SAT, a repository is constructed
having one package for the whole 3SAT formula, one package per clause of that formula, and three
packages for each propositional atom occurring in that formula. Dependencies and conflicts between
these packages are added in such a way that the package for the whole formula is installable if and only
if the 3SAT formula is satisfiable.
Nevertheless, this strong limiting result does not mean that we will not be able to decide installability

and the other problems in practice: the actual instances of these problems, as found in real repositories,
could be quite simple in the average.
In particular, the converse of the reduction used for the NP-completeness proof leads to an effective way

of deciding package installability. We developed an algorithm that encodes a repositoryR and its depen-
dencies as a Boolean formulaC(R). (Details of the encoding will be published in a forthcoming paper.)
Assignments of truth values to boolean variables that satisfyC(R) are in one-to-one correspondence
with sets of co-installable packages. Therefore, a packageP is installable if and only if the Boolean for-
mulaC(R) ∧ P is satisfiable, which we can check relatively efficiently using off-the-shelf SAT solving

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

0 250 500 750 1000 1250 1500 1750 2000
Dependency closure size

1

10

100

1000

10000

N
um

be
r

of
 p

ac
ka

ge
s

0

0.25

0.5

0.75

1

C
um

ul
at

ed
 r

at
io

Figure 4: Number of packages as a function of the size of their dependency closures.

technology.
We implemented the conversion algorithm as well a SAT solver [ES04] and ran it over both the De-

bian pool (over 30,000 packages) and the Mandriva Cooker distribution (around 5,000 packages). The
execution time is entirely acceptable, and the tool found a number of non-installable packages in both
distributions.
We are now focusing our attention on the two time-dependent desirable properties for the repositories,

which are, algorithmically speaking, much harder.

5 Empirical measurements

In parallel with our formal complexity and algorithmic investigations, we also performed some empirical
measurements on the Debian and Mandriva distributions, to try and grasp the practical complexity of the
problems.
Figure 4 gives a histogram showing the number of packages as a function of the size of the dependency

closure, from the Debian stable, unstable and testing pools on 2005-12-13, which has 31149 packages.
The average closure size is 158; 50% have a closure size of 71 or less, 90% of 1077 or less. These
numbers show that naive combinatorial algorithms, exponential in the size of the dependency closure,
are clearly out of the question.
Figure 5 estimates the complexity of solving the Boolean formulae generated by our encoding of the

installability problem. The “temperature”T of a formula in 3SAT conjunctive normal form is defined as
T = m/n wherem is the number of clauses andn the number of variables. There is strong theoretical

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

0.75 1 1.25 1.5
Temperature

1

10

100

1000

10000

N
um

be
r

of
 p

ac
ka

ge
s

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

ed
 r

at
io

Figure 5: Number of packages as a function of the “temperature” of the SAT problems corresponding to
their installability problems.

and practical evidence that hard SAT problems have a temperature close to 4.2, while SAT problems with
temperatures well below or above that limit are easier to solve. The temperatures for the SAT problems
corresponding to installability of the Debian packages range from 0.75 to 1.49, well below the threshold
value of 4.2. This result confirms that we are dealing with relatively easy satisfiability problems, maybe
owing to the small-world nature of the dependency graphs [LW05].

6 Conclusions

We have presented and motivated in this paper three fundamental properties for large repositories of
FOSS packages that are quite different from the usual properties of component collections, due to the
large spectrum of languages, technologies, frameworks and interfaces spanned by a contemporary FOSS
distribution.
Despite their algorithmic complexity, we have already performed large-scale tests indicating that the

first of these properties can be mechanically checked in reasonable time. We continue similar investiga-
tions on the other properties.
We claim that providing efficient tools to check these properties is an essential step in order to ensure

that the FOSS development model stays sustainable, and we suggest that researchers should look into
the specificities brought by FOSS in the software engineering world.

THE SPECIAL ISSUE’ S TITLE

THE EASST NEWSLETTER

References

[Bai97] Edward C. Bailey. Maximum RPM, taking the Red Hat package manager to the limit.
http://rikers.org/rpmbook/,http://www.rpm.org, 1997.

[BD02] Manfred Broy and Ernst Denert.Software Pioneers: Contributions to Software Engineering.
Springer-Verlag, 2002.

[DG98] Debian Group. Debian policy manual. http://www.debian.org/doc/debian-policy/, 1996–
1998.

[Ekl05] David Eklund. The lib update/autoupdate suite. http://luau.sourceforge.net/, 2003–2005.

[ES04] Niklas Éen and Niklas S̈orensson. An extensible SAT-solver. In Enrico Giunchiglia and Ar-
mando Tacchella, editors,Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Pa-
pers, volume 2919 ofLecture Notes in Computer Science, pages 502–518. Springer, 2004.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[LW05] Nathan LaBelle and Eugene Wallingford. Inter-package dependency networks in open-
source software.Submitted to Journal of Theoretical Computer Science, 2005.

[Man05] Mandriva. URPMI. http://www.urpmi.org/, 2005.

[Nie05] Gustavo Niemeyer. Smart package manager. http://labix.org/smart/, 2005.

[Sil04] Gustavo Noronha Silva. Apt-howto. http://www.debian.org/doc/manuals/apt-howto/, 2004.

[Szy97] Clemens Szyperski.Component Software: Beyond Object-Oriented Programming. Addison
Wesley Professional, 1997.

[TT01] L. Taylor and L. Tuura. Ignominy: a tool for software dependency and metric analysis with
examples from large HEP packages. InProceedings of CHEP’01, 2001.

[Tuu03] L. A. Tuura. Ignominy: tool for analysing software dependencies and for reducing complex-
ity in large software systems. InProceedings of the VIII International Workshop on Advanced
Computing and Analysis Techniques in Physics Research, volume 502, pages 684–686, 2003.

[vdS04] Tijs van der Storm. Variability and component composition. InProceedings of the Eighth
International Conference on Software Reuse (ICSR-8), 2004.

THE SPECIAL ISSUE’ S TITLE

