
Dynamics in ML

Xavier Leroy

Ecole Normale Supérieure∗
Michel Mauny

INRIA Rocquencourt∗

Abstract

Objects with dynamic types allow the integration of operations that essentially re-
quire run-time type-checking into statically-typed languages. This paper presents two
extensions of the ML language with dynamics, based on what has been done in the
CAML implementation of ML, and discusses their usefulness. The main novelty of this
work is the combination of dynamics with polymorphism.

1 Introduction

Static typing (compile-time enforcement of the typing rules for a programming lan-
guage) is generally preferred over dynamic typing (the production of run-time tests
to check the rules), since static typing reports type violations earlier, and allows for
generation of more efficient code. However, one has to revert to dynamic typing for
programs that cannot be recognized type-safe at compile-time. This situation of-
ten reveals weaknesses of the type system used. Dynamic typing could be avoided,
then, by employing more advanced type systems. For instance, it had long been
believed that generic functions (functions that can be applied to arguments of dif-
ferent types) can only be supported by dynamically-typed languages, such as Lisp,
until the advent of polymorphic type disciplines, such as the one of ML, that permit
static typing of such functions.

In contrast, there are programming situations that seem to require dynamic typ-
ing in an essential way. A first example is the eval function (and similar meta-level
operations), that takes a character string, evaluates it as an expression of the lan-
guage, and returns its value. The type of the returned value cannot be known at
compile-time, since it depends on the expression given as argument. Another exam-
ple is structured input/output. Some runtime systems provide an extern primitive,
that takes an object of any type, and efficiently outputs a low-level representation
of the object to persistent storage. The object can be read back later on, possibly in
another process, by the intern primitive. The extern function can easily be typed
in a polymorphic type system; but this is not the case for the intern function,
since the type of its result depends on the contents of the file being read. In order
to guarantee type safety, it is clear that the values returned by eval or by intern

∗Authors’ address: INRIA Rocquencourt, projet Formel, B.P. 105, 78153 Le Chesnay, France. Xavier.Leroy,
Michel.Mauny@inria.fr

must carry some type information at run-time, and that this type information must
be dynamically checked against the type expected by the context.

As demonstrated above, dynamic typing cannot be avoided for a few highly
specific functions. But we would like to retain static typing for the huge majority
of functions that can be typechecked at compile-time. What we need is a way to
embed dynamic typechecking within a statically-typed language. The concept of
objects with dynamic types (or dynamics, for short) is an elegant answer to this
need. A dynamic is a pair of a value v and a type expression τ , such that value v
has type τ . From the standpoint of static typing, all dynamics belong to the built-in
type dyn. Type dyn represents those values that are self-described as far as types
are concerned; that is, those values on which run-time type checking is possible.

Continuing the examples above, function eval naturally returns dynamics, so its
static type is string → dyn. Similarly, intern has type io channel → dyn, and
the extern function will be made to accept arguments of type dyn only, since the
external representation of an object should now include its type.

Two constructs are provided to communicate between type dyn and the other
types in the language. One construct creates dynamics by taking an object of any
type and pairing it with its static type. The other construct checks the internal type
of a dynamic against some static type τ , and, in case of success, gives access to the
internal value of the dynamic with type τ .

In this paper, we consider the integration of dynamics, as described above, into
the ML language [12]. The main novelty of this work is the combination of dynam-
ics with a polymorphic type discipline. This combination raises interesting issues
that have not been addressed yet. The main published references on dynamics have
only considered first-order types [1], or first-order types with subtyping [4]. Poly-
morphism gets mentioned in [2], but very briefly and very informally. An early,
unpublished work by Mycroft [13] is said to consider the extension of ML with
dynamics, but we were unable to find this draft.

The two extensions of ML with dynamics we present here are not mere propos-
als. The simpler one has been fully integrated into the CAML system [18], the
ML implementation developed at INRIA, for more than two years. It has grown
to the point of stability where dynamics are used inside the CAML system. The
second, more ambitious extension was also extensively prototyped in CAML. This
practical experience enables us to discuss the main implementation issues involved
by dynamics. It also gives some hints on the practical usefulness of dynamics in an
ML system, both for user-level programming and system-level programming.

The remainder of this paper is organized as follows. Section 2 presents a first
extension of ML with dynamics. After an informal presentation, we formalize typing
and evaluation rules for dynamics within a small subset of ML, and discuss type
inference and compilation issues. Section 3 extends the system previously described
with the ability to destructure dynamics (both the type part and the value part),
and rebuild dynamics with the components of the structure. We adapt the typing
and evaluation rules of section 2 to this extension. Section 4 discusses the practical
usefulness of the two systems, based on some significant uses of dynamics in the
CAML environment. Finally, we give a few concluding remarks in section 5.

2 Simple dynamics

This section describes dynamics as they are implemented in CAML release 2.6 and
later [18, chapter 8].

2.1 Presentation

The new construct dynamic a is provided to create dynamics. This construct eval-
uates a, and pairs it with (the representation of) the principal type inferred for a.
For instance, dynamic 1 evaluates to (1, int), and dynamic true to (true, bool).
In any case, the expression dynamic a is of type dyn, without any mention of the
internal type of the dynamic.

Objects with polymorphic types can be put in dynamics, provided their type is
closed : none of the type variables free in their type should be free in the current
typing environment. For instance, dynamic(function x → x) is perfectly legal,
since the identity function has type α → α, and α is a fresh type variable, that
does not appear anywhere else. The resulting dynamic value is (function x →
x, ∀α. α → α). The explicit quantification over α emphasizes the fact that the
internal type of the dynamic is closed, and suggests that the internal value is really
polymorphic: it will be possible to use it with several types.

On the other hand, function x → dynamic x is rejected: dynamic x is typed
in the environment x : α, where x does not have a closed type. In this case, it
is problematic to determine at compile-time the exact type of the object put into
the dynamic: static typing says it can be any instance of α, that is, any type. To
correctly evaluate the function above, the actual type to which α is instantiated
would have to be passed at run-time. Since polymorphic functions can be nested
arbitrarily, this means that all polymorphic functions, even those that do not build
dynamics directly, would have to take type expressions as extra parameters, and
correctly propagate these types to the polymorphic functions they call. We would
loose one major benefit of static typing: that run-time type information is not needed
except inside dynamic objects. Such is the reason why dynamics are required to be
created with closed types.

To do anything useful with a dynamic, we must gain access to its internal value,
bringing it back to the statically-typed world. A run-time type check is needed at
that point to guarantee type safety. This check must ensure that the internal type of
the dynamic does match the type expected by the context. This operation is called
coercion of a dynamic. Coercion is customarily presented as a special syntactic
construct (the typecase construct in [1]). This construct binds the internal value
of the dynamic to some variable. It also handles the case where the run-time type
check fails, and another coercion must be attempted, or an exception raised.

In ML, these two aspects, binding and failure handling, are already covered by
the pattern-matching mechanism. Hence, instead of providing a separate coercion
construct, we integrate dynamic coercion within pattern-matching. Namely, we
introduce a new kind of pattern, the dynamic patterns, written dynamic(p : τ). This
pattern selects all dynamics whose internal value matches the pattern p, and whose
internal type agrees with the type expression τ . For instance, here is a function that

takes a dynamic, and attempts to print a textual representation for it:

let print = function
dynamic(x : int) → print int x

| dynamic(s : string) → print string s
| dynamic((x, y) : int× int) →

print string ”(”; print int x; print string ”, ”;
print int y; print string ”)”

| x → print string ”?”

For type matching, two behaviors can be considered. The first one is to require
that the internal type of the dynamic is exactly the same as the expected type, up to
a renaming of type variables. The other behavior is to also accept any dynamic whose
internal type is more general than the expected type. For instance, dynamic [],
whose internal type is ∀α. α list, matches the pattern dynamic(x : int list)
with the latter behavior, but not with the former. We have retained the latter
behavior, since it seems more coherent with the statically-typed part of the ML
language (where e.g. the empty list can be used in any context that expects a list
of integers).

Type patterns are allowed to require a polymorphic type, as in dynamic(f : α→
α). This pattern matches any dynamic whose internal type is as general or more
general than the type in the pattern (e.g. β → β, or β → γ). As a consequence of
these semantics, identifier f can safely be used with any instance of the type α→ α
in the right-hand side of the pattern-matching:

function dynamic(f : α→ α) → f f

The type matching semantics guarantee that f will be bound at run-time to a value
that belongs to all type instances of the type scheme α → α. This is the only case
in ML where a variable bound by a function construct can be used with several
types inside the function body.

In the example above, the type variable α is not a regular pattern variable such as
f: it is implicitly quantified universally by the dynamic pattern, and therefore cannot
be instantiated during the matching process. For instance, the pattern dynamic(x :
α list) only matches a dynamic of the polymorphic empty list, not any dynamic
of any list. As a consequence, a type pattern τ more general than a type pattern τ ′

will match less dynamics than τ ′, in contrast with regular ML patterns. This means
that in a dynamic matching, the most general type patterns must come first. To
catch polymorphic lists as well as integer lists, one must write

function dynamic(x : α list) → . . .
| dynamic(x : int list) → . . .

instead of the more intuitive definition

function dynamic(x : int list) → . . .
| dynamic(x : α list) → . . .

In the latter definition, the second case would never be selected, since the first case
also matches dynamics with internal type α list.

2.2 Syntax

We now formalize the ideas above, in the context of the core ML language, enriched
with pattern-matching and dynamics. The syntax of the language is as follows:

τ ::= int [] α [] τ → τ ′ [] τ × τ ′ [] dyn

p ::= x [] i [] (p, p′) [] dynamic(p : τ)

a ::= x [] i [] function p1 → a1 | . . . | pn → an [] a a′ [] (a, a′)

[] let p = a in a′ [] dynamic a

Type expressions (with typical elements τ , σ) are either atomic types such as the
type int of integers; type variables α; function types; product types; or the type
dyn of dynamics.

Patterns (typical elements p,q) are either variables x; integer constants i; pairs
of patterns; or dynamic patterns dynamic(p : τ).

Finally, for expressions (typical elements a,b), we have variables x; integer con-
stants i; functions with pattern matching on the argument; function application;
pair construction; the let binding with pattern matching on the first expression;
and the dynamic construct to build dynamics.

2.3 Typechecking

The typing rules for this calculus are given in figure 1. Most of the rules are just
those of the core ML language, revised to take pattern-matching into account in
the function and let constructs. Two additional rules present the creation and
coercion of dynamics.

The rules define the predicate E ` a : τ , meaning “expression a has type τ in
the typing environment E”. An auxiliary predicate, ` p : τ ⇒ E, is used, meaning
“pattern p has type τ and enriches the type environment by E”. Here, E stands for
a sequence of typing assumptions of the format x : Σ, where Σ is a type scheme: a
type expression τ with zero, one or more type variables αk universally quantified.

E ::= (x : ∀α1 . . . αn.τ)∗

We write E(x) for the type associated to x in E. If x is bound several times, we
consider the rightmost binding only. We write FV (τ) for the free variables of type
expression τ , and FV (E) for the union of the free variables of all type schemes in
E. Finally, Clos(τ, V) stands for the closure of type τ with respect to those type
variables not in the set V . It is defined by:

Clos(τ, V) = ∀α1 . . . αn.τ

where {α1, . . . , αn} is FV (τ) \ V . The Clos operator is extended pointwise to type
environments.

The only new rules are rule 7, that deals with dynamic creation, and rule 11,
that deals with dynamic coercion. Rule 7 says that the expression dynamic a has
type dyn, provided that a has a closed type τ : none of the free variables of τ are
free in the current typing environment E.

(1) E ` i : int (2)
E(x) = ∀α1 . . . αn.τ

E ` x : τ [αk ← τk]

(3)
` pk : σ ⇒ Ek E, Ek ` ak : τ

E ` function p1 → a1 | . . . | pn → an : σ → τ

(4)
E ` a : σ → τ E ` b : σ

E ` a b : τ
(5)

E ` a : σ E ` b : τ

E ` (a, b) : σ × τ

(6)
E ` a : σ ` p : σ ⇒ E ′ E, Clos(E ′, FV (E)) ` b : τ

E ` let p = a in b : τ

(7)
E ` a : σ FV (σ) ∩ FV (E) = ∅

E ` dynamic a : dyn

(8) ` x : τ ⇒ x : τ (9) ` i : int⇒ ε

(10)
` p : τ ⇒ E ` p′ : τ ′ ⇒ E ′

` (p, p′) : τ × τ ′ ⇒ E, E ′
(11)

` p : τ ⇒ E

` dynamic(p : τ) : dyn⇒ Clos(E, ∅)

Figure 1: Typing rules

Rule 11 says that the pattern dynamic(p : τ) matches values of type dyn, provided
p matches values of type τ . Assume p binds variables x1 . . . xn to values of types
τ1 . . . τn. Then, dynamic(p : τ) binds the same variables to the same values. As
described above, all type variables free in τ1 . . . τn can be generalized. Hence, we
take that dynamic(p : τ) binds x1 . . . xn to values of types Clos(τ1, ∅) . . . Clos(τn, ∅).

2.4 Type inference

The type system presented above enjoys the principal type property, just as the
one of ML. The principal type is computed by a trivial extension of the Damas-
Milner type inference algorithm [5] to handle the dynamic construct and dynamic
patterns. For the dynamic a construct, the only difficulty is to ensure that the type
of a is closed. It would not be correct to infer the most general type τ for a, and
fail immediately if some variables in τ are free in the current typing environment:
these variables may become instantiated to monomorphic types later. Consider
the expression (function x → dynamic x) 1. Assuming the function part of the
application is typed before the argument, the function is given type α → dyn, and
dynamic x appears to build a dynamic with non-closed type α. But when the
application is typed, α gets instantiated to int, and we know that the dynamic is
created with internal type int. Hence, the closedness check must be delayed to the
end of type inference. The CAML implementation proceeds as follows: when typing
dynamic a, all type variables that are free in the inferred type for a and in the current

(12) e ` x⇒ e(x) (13) e ` i⇒ i

(14) e ` function . . . | pk → ak | . . .⇒ [e, . . . | pk → ak | . . .]

(15)

e ` a⇒ [e′, . . . | pk → ak | . . .] e ` b⇒ v
` v < pk ⇒ e′′ e′, e′′ ` ak ⇒ w k minimal

e ` a b⇒ w

(16)
e ` a⇒ v e ` b⇒ w

e ` (a, b)⇒ (v, w)
(17)

e ` a⇒ v ` v < p⇒ e′ e, e′ ` b⇒ w

e ` let p = a in b⇒ w

(18)
e ` a⇒ v Type(a) = τ

e ` dynamic a⇒ dynamic(v : τ)

(19) ` v < x⇒ x← v (20)
` v < p⇒ e ` v′ < p′ ⇒ e′

` (v, v′) < (p, p′)⇒ e, e′

(21) ` i < i⇒ ε (22)
` v < p⇒ e θτ = σ

` dynamic(v : τ) < dynamic(p : σ)⇒ e

Figure 2: Evaluation rules

typing environment are collected in a list, and prevented from being generalized. At
the end of typechecking, all type variables in the list must be instantiated by ground
types.

For dynamic patterns dynamic(p : τ), the expected type τ is given explicitly in
the pattern, so there is actually nothing to infer. We just check that the pattern
p is of type τ , and record the (polymorphic) types of the variables bound by p.
We have considered inferring τ from the pattern p and the right-hand side a of the
pattern-matching, but this seems quite difficult, since variables bound by p can be
used with several different types in a.

2.4.1 Evaluation

We now give call-by-value operational semantics for our calculus. Expressions are
mapped to values, that is, terms with the following syntax:

v ::= i [] (v, v′) [] dynamic(v : τ) [] [e, p1 → a1 | . . . | pn → an]

e ::= (x← v)∗

A value is either an integer i; a pair of values; a dynamic value dynamic(v : τ) (a
pair of a value v and a type expression τ); or a closure [e, p1 → a1 | . . . | pn → an]
of function body p1 → a1 | . . . | pn → an by evaluation environment e. Evaluation
environments map identifiers to values in the same way as typing environments map
identifiers to types. For dynamic values, all type variables in the type part are

considered universally quantified there; hence, two dynamic values are identified up
to a renaming of their type variables.

The evaluation rules are given in figure 2. They closely follow the structure of the
typing rules. A first set of rules define the predicate e ` a⇒ v, meaning “expression
a evaluates to value v in environment e”. The remaining rules define the auxiliary
predicate ` v < p⇒ e, meaning “value v matches pattern p, binding variables in p
to values as described by e”.

Since most rules are classical, we only detail the two rules dealing with dynamics.
Rule 18 expresses that evaluating dynamic a amounts to evaluating a, and pairing
its value with the static type of a. The type of a is not mentioned in the expression
dynamic a, so there are some technicalities involved in defining precisely what it is.
We assume all expressions a considered here are subterms of a given closed, well-
typed term a0 (the program). Let D be the principal type derivation for a0 (the one
that is built by the type inference algorithm). For each subterm a of a0, Type(a) is
defined as the type given to a in D. (In practice, dynamic expressions are annotated
with their types during typing.)

Rule 22 defines the semantics of pattern matching over dynamics. The internal
type τ of the dynamic is required to be more general than the type σ expected by
the pattern: there must exist a substitution θ of types for type variables such that
θτ is σ. The internal value of the dynamic is recursively matched against the value
part of the dynamic pattern.

2.5 Compilation

In the current CAML implementation, internal types of dynamics are represented
by the following term-like structure:

type gtype = Gvartype of int
| Gconsttype of int× gtype list

Type constructors are identified by unique stamps instead of names to correctly
handle type redefinition. Type variables are also encoded as integers. The code
generated for dynamic a simply pairs the value of a with the structured constant
representing Type(a) as a gtype. For pattern matching, CAML provides a library
function ge gtype, that takes two types and tests whether the first one is more
general than the second one. The code generated for pattern matching on dynamics
simply calls ge gtype with the internal type of the dynamic, and the expected type
(again, a structured constant of type gtype). Only when ge gtype returns true is
the sequence of tests matching the internal value against the pattern entered. Those
tests were compiled assuming that the value being tested belongs to the expected
type for the dynamic; therefore, it would be incorrect to match the internal value
first, and then the internal type.

Little effort went into making run-time type tests faster. We have not yet en-
countered CAML programs that need to perform dynamic coercions inside tight
loops. In case coercion speed becomes an important issue, we could first switch to
the following representation for internal types of dynamics:

type gtype = Gvartype of gtype option ref

| Gconsttype of int× gtype list

This representation makes it possible to perform instantiations by physical modi-
fications on the type, which is more efficient than recording them separately as a
substitution. (These physical modifications are undone at the end of the matching.)

Then, we could perform partial evaluation on the ge gtype predicate, since its
second argument is always known at compile-time. Conventional pattern-matching
compilation techniques [14] do not apply directly, however, since they consist in spe-
cializing term-matching predicates on their first argument (the more general term),
not on the second one (the less general term). Specializing a matching predicate
such as ge gtype on its second argument turns out to be just as hard as the more
general problem of specializing a unification predicate on one of its arguments. The
latter problem has been extensively studied in the context of Prolog compilation. A
popular solution is the Warren Abstract Machine and its compilation scheme [17, 9].
Most of the techniques developed there apply to our problem. We shall detail this
issue at the end of section 3.6.

3 Non-closed types in dynamic patterns

This section presents an extension of the system presented above that makes it
possible to match dynamic values against dynamic patterns with incomplete type
information. This enables destructuring dynamics without specifying their exact
type.

3.1 Presentation

With the previous system, the internal value of a dynamic can only be extracted
with a fixed type. This turns out to be insufficient in some cases. Let us continue
the print example of section 2.1. For product types, we would like to have a single
case that matches all dynamics of pairs, prints the parentheses and comma, and
recursively calls the print function to print the two components of the pair. This
cannot be done with the system above: the pattern dynamic((x, y) : α × β) will
only match dynamics whose internal type is at least as general as ∀α∀β. α × β,
definitely not all dynamics whose internal type is a pair type. What we need is
to have type variables in dynamic patterns that are not universally quantified, but
rather existentially quantified, so that they can be bound to the corresponding parts
of the internal type of the dynamic.

We now give a more complete version of the print function, with explicit uni-
versal and existential quantification for type variables in dynamic patterns. We will
use it as a running example in this section.

type fun arg = Arg of string in
let rec print = function

dynamic(i : int) → (1)
print int i

| dynamic(s : string) → (2)
print string ”\””; print string s; print string ”\””

| ∃α.∃β.dynamic((x, y) : α× β) → (3)
print string ”(”; print(dynamic x); print string ”, ”;
print(dynamic y); print string ”)”

| ∃α.dynamic([] : α list) → (4)
print string ”[]”

| ∃α.dynamic(x :: l : α list) → (5)
print(dynamic x); print string ” :: ”; print(dynamic l)

| ∀α.dynamic(f : α→ α) → (6)
print string ”function x → x”

| ∃α.∀β.dynamic(f : α→ β) → (7)
print string ”function x → ⊥”

| ∀α.∃β.dynamic(f : α→ β) → (8)
let s = gensym() in

print string ”function ”; print string s;
print string ” → ”; print(dynamic(f (Arg s)))

| dynamic(Arg(s) : fun arg) → (9)
print string s

| ∃α.∃β.dynamic(f : α→ β) → (10)
print string ”function x → . . . ”

| d → (11)
print string ”?”

Typing existential quantification

Let us detail first how these existentially quantified type variables behave when typ-
ing the right-hand side of the pattern-matching. Such a variable α can be bound to
any actual type at run-time. Hence, at compile-time, we should make no assump-
tions about type α, and treat it as an abstract type. That is, type α does not match
any type except itself; and type α must not escape the scope of the pattern-matching
that binds it: α is not allowed to be free in the type of the returned value. As a
consequence, the following two functions are rejected:

function ∃α. dynamic(x : α) → x = 1
function ∃α. dynamic(x : α) → x

while this one is perfectly legal:

function ∃α. dynamic((f, x) : (α→ int)× α) → f x

and can be applied to dynamic(succ, 2) as well as to dynamic(int of string, ”3”).
There is one important difference between existentially bound type variables and

abstract types: the actual type bound to such a type variable is available at run-time.
Given an object a whose static type contains a variable α existentially bound, it is
possible to build a dynamic from this object. The internal type of the dynamic will
be the “true” type for a: its static type where the binding of α has been performed.
Cases (3) and (5) in the print function illustrates this feature: when the matching
with ∃α. dynamic(x :: l : α list) succeeds, two dynamics are created, dynamic x
with internal type the type τ bound to α; and dynamic l with internal type τ list.
This transforms a dynamic of a non-empty list into the dynamic of its head, and
the dynamic of its tail, thus allowing recursion on the list.

Mixed quantifications

Existentially quantified variables can be freely mixed with universally quantified
variables inside type patterns. Then, the semantics of the matching depends on the
relative order in which these variables are quantified. This is illustrated by cases
(7) and (8) in the print example — two modest attempts at printing functional
values.

In case (7), the pattern is ∃α.∀β.dynamic(f : α→ β). Since α is bound before β,
variable α only matches type expressions that do not depend on β. For instance, a
dynamic with internal type γ → γ is rejected. The functions selected by the pattern
above are exactly those returning a value of type β for all β. Since no such value
exists in ML, the selected functions never terminate (or always raise an exception),
hence they are printed as function x→ ⊥.

In case (8), the pattern is ∀α.∃β.dynamic (f : α → β). Here, β is bound after
α; hence β can be instantiated by type expressions containing α. For instance,
this pattern matches a dynamic with type γ → γ list, binding β to α list.
This pattern catches a class of functions that operate uniformly on arguments of
any type. These functions cannot test or destructure their argument, but only put
it in data structures or in closures. Therefore, if we apply such a function to a
symbolic name x, and recursively print the result, we get a representation of the
function body, with x standing for the function parameter1. (Actually, the printed
function is extensionally equivalent to the original function, assuming there are no
side-effects.)

In the presence of mixed quantification, the rules for typing the right-hand side of
pattern-matchings outlined above have to be strengthened: it is not always correct
to treat an existentially quantified type variable as a new abstract atomic type.
Consider:

function ∀α.∃β.dynamic(f : α→ β) → f 1 = f true

Assuming f : ∀α. α → β, the expression f 1 = f true typechecks, since both
applications of f have type β. Yet, when applying the function above to dynamic
(function x→ x), the matching succeeds, f 1 evaluates to 1, f true evaluates to
true, and we end up comparing 1 with true — a run-time type violation. Since the
actual value of β is allowed to depend on α, static typechecking has to assume that
β does depend over α, and treat two occurrences of β corresponding to different
instantiations of α as incompatible.

This is achieved by taking β in the right-hand side of the matching to be a type
constructor parameterized by α. To avoid confusion, we shall write β for the type
constructor associated to type variable β. Therefore, we now assume f : ∀α. α →
β(α) for the typing of f 1 = f true, and this leads to a static type error, since the
two sides of the equal sign have incompatible types β(int) and β(bool). However,
f 1 = f 2 is well-typed, since both sides have type β(int). The general rule is:
for the purpose of typing the right-hand side of a pattern-matching, existentially

1To avoid any confusion between the formal parameter and constants mentioned in the function body, formal param-
eters are represented by a local type fun arg = Arg of string. This ensures that the given function cannot create any
terms of type fun arg, unless it is the print function itself. Fortunately, the self-application print(dynamic print)
selects case (10) of the definition.

quantified type variables β are replaced by the type expression β(α1, . . . , αn), where
α1 . . . αn is the list of those type variables that are universally quantified before β
in the pattern. This transformation is known in logic as Skolemization.

Multiple dynamic matching

Type variables are quantified at the beginning of each case of the pattern-matching,
not inside each dynamic pattern. This makes no difference for universally quantified
variables. However, existentially quantified variables can be shared among several
dynamic patterns, expressing sharing constraints between the internal types of sev-
eral dynamics. For instance, the “dynamic function application” example of [1] can
be written as:

function ∃α.∃β. (dynamic(f : α→ β), dynamic(x : α)) →
dynamic(f x)

This function takes a pair of two dynamics, applies the first one (which should
contain a function) to the second one, and returns the result as a dynamic. It
ensures that the type of the argument is compatible with the domain type of the
function.

Type variables can be shared among two dynamic patterns of the same matching;
but we shall prohibit sharing between patterns belonging to different matchings
(curried dynamic matching). In other terms, all cases in a pattern matching are
required to be closed: all type variables contained in dynamic patterns should be
quantified at the beginning of the corresponding matching. For instance, it is not
possible to write the dynamic apply function in the following way (as it originally
appears in [1]):

function ∃α.∃β. dynamic(f : α→ β) → function dynamic(x : α) →
dynamic(f x)

This violates the requirement above, since α is bound by the outermost matching,
and mentioned in the innermost one. The reasons for this restriction are mostly
pragmatic: curried dynamic matching, in conjunction with polymorphic dynamics,
can require postponing some type matching in an outer dynamic matching until an
inner dynamic matching is performed. Our closedness condition on pattern matching
cases rules out these nasty situations, without significantly reducing the expressive
power of the language: curried dynamic application can still be written as

function df → function dx → match (df, dx) with . . .

at the expense of a later error detection, in case df is not a dynamic of function.

3.2 Syntax

The only syntactic change is the introduction of a sequence of quantifiers in front of
each case in pattern matchings.

a ::= . . . [] function Q1p1 → a1 | . . . | Qnpn → an

Q ::= ε [] ∀α.Q [] ∃α.Q

(23)
Qk ` pk : σ ⇒ Ek E, Ek ` ak : τ FSC(τ) ∩BV (Qk) = ∅

function Q1p1 → a1 | . . . | Qnpn → an : σ → τ

(24) Q ` x : τ ⇒ x : τ (25) Q ` i : int⇒ ε

(26)
Q ` p : τ ⇒ E Q ` p′ : τ ′ ⇒ E ′

Q ` (p, p′) : τ × τ ′ ⇒ E, E ′

(27)
FV (τ) ⊆ BV (Q) Q ` p : τ ⇒ E θ = S(ε, Q)

Q ` dynamic(p : τ) : dyn⇒ Clos(θτ, ∅)

Figure 3: Typing rules with explicit quantification in type patterns

We will always assume that variables are renamed so that quantifier prefixes Q never
bind the same variable twice. We write BV (Q) for the set of variables bound by
prefix Q.

3.3 Typechecking

We introduce the Skolem constants at the level of types. To each type variable α,
we associate the type constructor α, with variable arity.

τ ::= . . . [] α(τ1, . . . , τn)

Skolem constants are not permitted in the type part of dynamic patterns, nor in the
internal types of dynamic values. We shall write τ 0, σ0 for type expressions free of
Skolem constants. We define FSC(τ), the free Skolem constants of type τ , as the
set of all variables α such that type constructor α appears in τ .

The new typing rules for functions and for patterns are shown in figure 3. For
each case Qp → a in a function definition, the pattern p is typed taking Q into
account. The proposition ` p : σ ⇒ E now takes Q as an extra argument, becoming
Q ` p : σ ⇒ E. The Q prefix is carried unchanged through all rules, and it is used
only in the rule for dynamic patterns. There, in the types of all identifiers bound
by the pattern, we replace existentially quantified type variables by the correspond-
ing Skolem functions. This is performed by the substitution θ = S(ε, Q), defined
inductively on Q as follows:

S(α1 . . . αn, ε) = id

S(α1 . . . αn,∀α.Q) = S(α1 . . . αnα, Q)

S(α1 . . . αn,∃α.Q) = [α← α(α1, . . . , αn)] ◦ S(α1 . . . αn, Q)

Typing of action a proceeds as previously. We simply check that the type of τ does
not contain any Skolem constants corresponding to variables bound by Q.

(28) e ` int⇒ int (29) e ` α⇒ α (30) e ` dyn⇒ dyn

(31)
e ` σ ⇒ σ0 e ` τ ⇒ τ 0

e ` σ → τ ⇒ σ0 → τ 0
(32)

e ` σ ⇒ σ0 e ` τ ⇒ τ 0

e ` σ × τ ⇒ σ0 × τ 0

(33)
e(α) = [α1 . . . αn].τ

0 e ` τk ⇒ τ 0
k

e ` α(τ1 . . . τn)⇒ τ 0[αk ← τ 0
k]

(34)
e ` τ ⇒ τ 0 e ` a⇒ v

e ` dynamic a⇒ dynamic(v : τ 0)

(35)

e ` a⇒ [e1, . . . | Qkpk → ak | . . .] e ` b⇒ v k minimal

Qk ` v < pk ⇒ e2 ; Γ Solve(Qk, Γ) = e′3 e1, e2, e3 ` ak ⇒ w

e ` a b⇒ w

(36) Q ` v < x⇒ x← v ; ε (38)
Q ` v < p⇒ e ; Γ Q ` v′ < p′ ⇒ e′ ; Γ′

Q ` (v, v′) < (p, p′)⇒ e, e′ ; Γ, Γ′

(37) Q ` i < i⇒ ε ; ε (39)
Q ` v < p⇒ e ; Γ FV (τ) ∩BV (Q) = ∅

Q ` dynamic(v : τ) < dynamic(p : σ)⇒ e ; Γ, τ = σ

Figure 4: Evaluation rules with explicit quantification in type patterns

3.4 Evaluation

The introduction of existential type variables in dynamic patterns significantly com-
plicates the semantics of the language, both for dynamic creation, and for dynamic
matching. The modified evaluation rules are shown in figure 4.

For dynamic creation (rule 34), the evaluation of dynamic a now has to transform
the static type τ inferred for a before pairing it with the value of a. Skolem constants
representing existentially bound type variables are replaced by the actual types
bound to these variables, properly instantiated. These bindings of type variables
are recorded in the evaluation environment e. Hence the new syntax for evaluation
environments:

e ::= (x← v [] α← [α1, . . . , αn]τ
0)∗

Since existential type variables may depend upon universal variables, existential
variables are actually bound to a type context (a type expression with holes) instead
of a simple type expression. We write type contexts as [α1, . . . , αn]τ

0, where type
variables α1 . . . αn are names for the holes. Rules 28–33 define the evaluation relation
on types e ` τ ⇒ τ 0, mapping a type expression τ to a type expression τ 0 without
Skolem constants.

For dynamic matching during function application (rule 35), it is not possible
anymore to perform dynamic type matching separately for each dynamic pattern,
since patterns may share existentially quantified variables. Therefore, all dynamic
type constraints are collected first, as a set of equations τ = σ, where τ is the
internal type of a dynamic, and σ a type pattern. The pattern-matching predicate
becomes Q ` v < p ⇒ e ; Γ, where Γ is the sequence of equations between types
described above, and Q is the quantifier prefix for the matching (rules 36–39). The
Q prefix is used in rule 39 to rename the internal types of dynamics, if necessary, so
that their free type variables are not bound by Q. In a second phase, the function
Solve is called to resolve the equations on types Γ, taking prefix Q into account.
The precise definition of Solve is postponed to the next section. When the type
matching succeeds, Solve returns the correct bindings for existentially quantified
type variables. Then, evaluation of the right-hand side of the matching proceeds as
usual.

3.5 Unification

The run-time matching between type patterns and internal types of dynamics amounts
to a certain kind of unification problem, called unification under a prefix. This prob-
lem is studied extensively in [11], though in the very general setting of higher-order
unification, while we only deal with first-order terms here. The first-order problem
also appears in [10]. In our case, the problem consists in checking the validity of
propositions of the format

q1α1 . . . qnαn. σ = τ,

where the qk are either universal or existential quantifiers, and σ, τ are first-order
terms of a free algebra. Unification under mixed prefix generalizes the well-known
matching problem (“given two terms σ, τ , find a substitution θ such that θσ = τ”)
and the unification problem (“given two terms σ, τ , find a substitution θ such that
θσ = θτ”): writing α1 . . . αn for the variables of σ, and β1 . . . βn for the variables of
τ , the matching problem is equivalent to

∀β1 . . . ∀βn∃α1 . . . ∃αn. σ = τ,

and the unification problem to

∃β1 . . . ∃βn∃α1 . . . ∃αn. σ = τ.

For the purpose of dynamic matching, we not only want to know whether the
problem Q. σ = τ is satisfiable (Q is a quantifier prefix), but also to find minimal
assignments for the variables existentially quantified in Q that satisfy the proposi-
tion. From now on, we shall treat variables universally bound in Q as constants.
That is, we add such variables as term constructors with arity zero to the initial
signature (int and dyn of arity zero, → and × of arity two).

Definition 1 A substitution θ is a Q-substitution iff for all variables α, all constants
β contained in the term θα are bound before α in prefix Q.

Definition 2 A substitution θ is a Q-unifier of σ and τ iff θσ = θτ , and θ is a
Q-substitution. If such a substitution exists, σ and τ are said to be Q-unifiable.

Proposition 1 The proposition Q. σ = τ is satisfiable if and only if σ and τ are
Q-unifiable.

Proposition 2 Two terms σ and τ are Q-unifiable if and only if σ and τ are unifi-
able, and their most general unifier is a Q-substitution.

Proof: The “if” part is obvious. For the “only if” part, let θ be a Q-unifier of σ
and τ . Since θσ = θτ , the terms σ and τ are unifiable. Let µ be their most general
unifier. Let φ be a substitution such that θ = φ◦µ. For all variables α, the constants
contained in µα are a subset of those contained in θα. Since θ is a Q-substitution,
all constants in µα are also bound before α in Q. Hence µ is a Q-substitution. 2

This result trivially gives an algorithm to compute the most general Q-unifier of
σ and τ : compute the most general unifier of σ and τ , using Robinson’s algorithm,
and check that it is a Q-substitution.

We can now define the function Solve used in evaluation rule 32. It takes a prefix
Q and a set Γ of equations σ1 = τ1 . . . σn = τn. Since Q binds the variables in the τk

only, prefix Q is first completed to bind the variables in the σk also. Let α1 . . . αm be
the variables in the σk. We take Q′ = Q.∃α1 . . . ∃αm. (None of the αk is bound by
Q, and they can be instantiated to any type.) Let µ be the most general Q′-unifier
of σ1× . . .×σn and τ1× . . .×τn, as computed by the algorithm above. Substitution µ
is transformed into an evaluation environment, by adding bindings for the variables
that are existentially quantified in Q. More precisely, we take Solve(Q, Γ) to be
s(µ, ε, Q), where s is the run-time counterpart of the Skolemization function S used
for static typing in section 3.3:

s(µ, α1 . . . αn, ε) = ε

s(µ, α1 . . . αn,∀α.Q) = s(µ, α1 . . . αnα, Q)

s(µ, α1 . . . αn,∃α.Q) = α← [α1, . . . , αn]µα, s(µ, α1 . . . αn, Q)

3.6 Compilation

The semantics given above are quite complicated, so it is no surprise their imple-
mentation turns out to be delicate. The main difficulty is unification under a prefix
Q. Efficient algorithms are available for the regular unification phase. It remains
to quickly check that the resulting substitution is a Q-substitution. This check
can actually be integrated within the occur check, at little extra cost. The idea is
to reflect dependencies by associating ranks (integers) to type variables. Variables
bound by Q are statically given ranks 0, . . . , n from left to right. Other variables
(i.e. those in the internal types of dynamics) are considered bound at the end of Q,
and therefore given rank ∞. When identifying two variables α and β, the resulting
variable is given rank min(rank(α), rank(β)). Then, binding existential variable α
to a constructed type τ is legal iff:

1. (occur check) α does not occur in τ

2. (rank check) τ does not contain any universal type variable whose rank is
greater than the rank of α.

As in the case of simple dynamics (section 2.5), the easiest way to implement
type matching is to call at run-time a unification primitive, with the type pattern
(annotated by rank information) as a constant argument. Partial evaluation of the
unification primitive on the type pattern is desirable, not only to speed up type
matching, but also to provide a cleaner handling of run-time type environments:
after specialization, the bindings for the existential type variables could be recorded
e.g. on the stack or in registers, as for regular variables; without specialization, the
unification primitive would return a data structure containing these bindings, and
less efficient code would be generated to access these bindings.

Specializing unification on one of its arguments is not much harder than special-
izing matching on its second argument (section 2.5). The techniques developed for
the Warren Abstract Machine [17, 9] directly apply, with the exception of the extra
rank check. For instance, the WAM does not perform occur check for the initial
binding of an existential variable, while we have to check ranks even in this case.
Another difference is that backtracking is always “shallow”, in the WAM terminol-
ogy, since ML pattern-matching is deterministic. This simplifies the handling of the
trail.

During the summer of 1988, the first author integrated a prototype unification
compiler in the CAML system, following the ideas above. The CAML pattern-
matching compiler was modified to implement unification semantics as well as match-
ing semantics, depending on flags put on the patterns. This low-level mechanism al-
lowed performing unification on some parts of a data structure, and regular pattern-
matching on the other parts. Then, dynamic patterns dynamic(p : τ) were simply
expanded after type inference into product patterns (p, repr(τ)), where repr(τ)
is the pattern that matches all internal representations of types matching τ . The
pattern repr(τ) is marked to use unification semantics.

The only missing feature from what we have described above was rank check. At
that time, we considered only dynamic patterns where all universal type variables
come first, followed by all existential variables. Rank check could have been added
with little modifications.

Dynamic matching benefited from all optimizations performed by the pattern-
matching compiler, including factorization of tests between cases, and utilization
of typing informations. As a consequence, dynamic matching was performed quite
efficiently. However, we agreed that this efficiency was not worth the extra compli-
cation of the compiler, and this prototype was never carried to the point it could be
released.

4 Assessment

This section discusses the practical usefulness of the two propositions above, drawing
from our practical experience with the CAML system.

4.1 Interfacing with system functions

Dynamics makes it possible to provide an interface with a number of system func-
tions that cannot be given a static type in ML. Without dynamics, these functions

could not be made available to the user in a type-safe way. In the CAML system,
these functions include:

• extern : extern channel × dyn → unit and intern : intern channel →
dyn, to efficiently write and read data structures on persistent storage, pre-
serving sharing inside the structure. A typical use is, for a separate compiler,
to communicate compiled object code with its linker, and to save and reload
symbol tables representing compiled module interfaces.

• eval syntax : ML → dyn, to typecheck, compile, and evaluate a piece of ab-
stract ML syntax (type ML). This makes it easy to provide CAML as an
embedded language inside a program. For instance, the Calculus of Construc-
tion [8], a proof development environment, provides the ability to interactively
define proof tactics written in CAML, and to apply them on the fly. The
CAML macro facility [18, chapter 18] also makes use of eval syntax, since a
macro body is an arbitrary CAML expression whose evaluation leads to the
substituted text.

• MLquote : dyn → ML, which is one of the constructors of the datatype repre-
senting abstract syntax trees. This constructor embeds constants of arbitrary
types inside syntax trees. These constants are produced by compile-time eval-
uation (e.g. macro expansion and constant folding).

• print : dyn → unit, to print a dynamic value in ML syntax. CAML cannot
provide a polymorphic printing function with type α → unit, due to some
optimizations in the data representation algorithm, that makes it impossible
to decipher the representation of a data without knowing its type.

In these examples, the returned dynamics are generally coerced to fully known
types, usually monomorphic. Therefore, we do not see the need for existential type
variables there, and the simpler dynamic system presented in section 2 seems largely
sufficient. In practice, the restriction encountered first is not that dynamics can only
be coerced to closed types, but that dynamics can only be created with closed types.
This prevents the print function from being called by a polymorphic function to
print its polymorphic argument, for instance. This is often needed for debugging
purposes.

4.2 Ad-hoc polymorphism

ML polymorphism is uniform: polymorphic functions operate in the same way on
arguments of several types. In contrast, ad-hoc polymorphism consists in having
generic functions that accept arguments of several types, but operate differently on
objects of different types. Prime examples are the print function or the equal
predicate: different algorithms are used to print or compare integers, strings, lists,
or references. Several extensions of functional languages have been proposed, that
support the definition of such generic functions, including type classes [16] and run-
time overloading [15].

Dynamics provide a naive, but easy to understand, way to define generic func-
tions. As demonstrated above in the print example, dynamics permit joining pre-
defined functions on atomic types (print int, print string) and functions on data

structures (pairs, lists), that recurse on the components of the structures — the main
operation in defining generic functions. Another important aspect of generic func-
tions is extensibility: whenever a new datatype is defined, they can be extended to
deal with objects of the new type as well. This can also be supported in the dynamic
implementation, by keeping in a reference a list of, say, printing functions with type
dyn→ unit, to be applied until one succeeds whenever none of the standard cases
apply.

exception Cannot print; ;
type fun arg = Arg of string in
let printers = ref ([] : (dyn→ unit) list) in
let rec print = function

. . .
| d →

let rec try print = function
[] → print string ”?”

| f :: rest → try f d with Cannot print→ try print rest
in try print !printers

and new printer f =
printers := f :: !printers

Assuming, for instance, that type foo = A | B of int × foo has been defined, we
could add a printer for type foo as follows:

new printer (function
dynamic(A : foo) → print string ”A”

| dynamic(B(x, y) : foo) →
print string ”B(”; print (dynamic x); print string ”, ”;
print (dynamic y); print string ”)”

| x → raise Cannot print)

It should be pointed out that this implementation of generic functions with dy-
namics has several major drawbacks. First, because of the restrictions on dynamic
creation, polymorphic functions that need to call print have to take dynamics them-
selves. This is not too serious for print, but would be prohibitive for heavily used
generic functions, such as equal: all functions on sets, association lists, etc., would
have to operate on dynamics, thus dramatically reducing accuracy of static typing
and efficiency of compiled code. Moreover, nothing statically prevents the print
function from being applied to objects that have no printing method defined. This
important class of type errors will only be detected at run-time. Finally, such an
implementation of generic functions is rather inefficient, since dynamics are built
and coerced at each recursive call.

Type classes and run-time overloading techniques seem more realistic in this re-
spect. They statically guarantee that generic functions can only be applied to objects
on which they are defined. They perform type matching at compile-time whenever
possible. And run-time type information can usually be arranged as dictionaries of
methods, allowing faster method selection than dynamic type matching.

5 Conclusions

We have presented two extensions of ML with dynamic objects. The simpler one
has proved quite successful for interfacing user code with some important system
functions in a type-safe way. Its implementation cost remains moderate. The other
extension, that generalizes the dynamic patterns to include both universal and ex-
istential variables in the type part, makes it possible to work on dynamics without
coercing them to fixed types. Its semantics are more delicate, and therefore harder
to implement. We lack strong evidence of its practical usefulness. We have pre-
sented one promising application: writing generic functions such as print in a way
that is conceptually simpler than type classes. However, the usability of these func-
tions is limited by the restriction that dynamics must be created with closed types.
This restriction can be lifted, either by passing type information at run-time to all
polymorphic functions, or by examining the call chain at dynamic creation time to
reconstruct the instantiations of type variable — a technique developed for tagless
garbage collection [3, 6]. It remains to estimate the run-time penalty incurred.

References

[1] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic
typing in a statically-typed language. In 16th symposium Principles of Pro-
gramming Languages. ACM Press, 1989.

[2] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic
typing in a statically-typed language. Research report 47, DEC Systems Re-
search Center, 1989. Extended version of [1].

[3] Andrew W. Appel. Run-time tags aren’t necessary. Lisp and Symbolic Com-
putation, 2(2), 1989.

[4] Luca Cardelli. Amber. In Combinators and Functional Programming Lan-
guages, volume 242 of Lecture Notes in Computer Science. Springer, 1986.

[5] Luis Damas and Robin Milner. Principal type-schemes for functional programs.
In 9th symposium Principles of Programming Languages, pages 207–212. ACM
Press, 1982.

[6] Benjamin Goldberg. Tag-free garbage collection for strongly typed program-
ming languages. In Programming Language Design and Implementation, 1991.

[7] Michael Gordon. Adding eval to ML. Privately circulated note, circa 1980.

[8] Gérard Huet. The Calculus of Constructions, documentation and user’s guide.
Technical report 110, INRIA, 1989.

[9] David Maier and David S. Warren. Computing with logic: logic programming
with Prolog. Benjamin/Cummings, 1988.

[10] Dale Miller. Lexical scoping as universal quantification. In Proceedings of the
sixth international conference for logic programming, 1989.

[11] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computa-
tion, 14:321–358, 1992.

[12] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The defini-
tion of Standard ML (revised). The MIT Press, 1997.

[13] Alan Mycroft. Dynamic types in ML. Draft, 1983.

[14] Simon L. Peyton-Jones. The implementation of functional programming lan-
guages. Prentice-Hall, 1987.

[15] François Rouaix. Safe run-time overloading. In 17th symposium Principles of
Programming Languages. ACM Press, 1990.

[16] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-
hoc. In 16th symposium Principles of Programming Languages, pages 60–76.
ACM Press, 1989.

[17] David H.D. Warren. An abstract Prolog instruction set. Technical note 309,
SRI International, 1983.

[18] Pierre Weis et al. The CAML reference manual, version 2.6.1. Technical report
121, INRIA, 1990.

