
UNIT

�

E DE RECHERCHE

INRIA-ROCQUENCOURT

Institut National

de Recherche

en Informatique

et en Automatique

Domaine de Voluceau

Rocquencourt

B.P. 105

78153 Le Chesnay Cedex

France

T�el.:(1)39 63 55 11

Rapports de Recherche

N

�

1264

Programme 2

Calcul symbolique, Programmation

et G�enie logiciel

EFFICIENT DATA

REPRESENTATION IN

POLYMORPHIC LANGUAGES

Xavier LEROY

Août 1990

Repr�esentations de donn�ees e�caces

dans les langages polymorphes

Xavier Leroy

1

R�esum�e

Les langages avec typage polymorphe (p.ex. ML) utilisent g�en�eralement des repr�esentations de

donn�ees �a la Lisp pour leur impl�ementation|tout doit tenir dans un mot, si n�ecessaire en �etant

allou�e dans le tas et manipul�e via un pointeur. Ceci s'explique par le fait que, contrairement aux

langages classiques avec typage statique (Pascal), on ne peut pas donner �a la compilation un et

un seul type �a chaque expression, condition sine qua non pour pouvoir utiliser des repr�esentations

plus e�caces (p.ex. des valeurs non allou�ees occupant plusieurs mots). Dans ce rapport, on montre

comment tirer parti des informations de typage statique pour m�elanger de mani�ere correcte deux

styles de repr�esentations de donn�ees dans l'impl�ementation d'un langage polymorphe: on utilise des

repr�esentations sp�ecialis�ees, particuli�erement e�caces, quand les types sont compl�etement d�eter-

min�es �a la compilation, et des repr�esentations uniformes, �a la Lisp, dans les autres cas.

E�cient data representation

in polymorphic languages

Xavier Leroy

Abstract

Languages with polymorphic types (e.g. ML) have traditionally been implemented using Lisp-like

data representations|everything has to �t in one word, if necessary by being heap-allocated and

handled through a pointer. The reason is that, in contrast with conventional statically-typed

languages such as Pascal, it is not possible to assign one unique type to each expression at compile-

time, an absolute requirement for using more e�cient representations (e.g. unallocated multi-

word values). In this paper, we show how to take advantage of the static polymorphic typing to

mix correctly two styles of data representation in the implementation of a polymorphic language:

specialized, e�cient representations are used when types are fully known at compile-time; uniform,

Lisp-like representations are used otherwise.

1

Ecole Normale Sup�erieure et INRIA Rocquencourt, projet Formel

1

1 Introduction

Most programming languages include some kind of type system. Among the numerous motivations

for using a type system, I shall focus on two main goals: 1- to make programs safer, and 2- to allow

for better compilation.

The �rst concern is to ensure data integrity in programs. Many operations are meaningless

when they are performed on values of the wrong kind, such as, for instance, applying a boolean as

if it was a function. In these cases, the results are either meaningless, unpredictable values, or a

hardware fault. One of the aims of a type system is to prevent such run-time type errors. From

this standpoint, typing can be either static (performed at compile-time), or dynamic (performed at

run-time, just before type-constrained operations). But in any case, typing must be strong: there

should be no way to claim that a value has a given type when in fact it does not.

Another aim of a type system is to support e�cient compilation. Most hardware architectures

are somehow typed, in the sense that some resources are dedicated to operate on certain kinds of

data. For instance, many processors have two sets of registers, one set to hold integers and pointers,

and the other to hold oating-point values. On integer registers, no instructions are provided

to perform oating-point computations, and vice-versa. In addition, oating-point registers are

usually wider than integer registers, therefore a oating-point number cannot �t in an integer

register. When mapping a programming language on these architectures, it is important to know

which values are oating-point numbers and which ones are not, otherwise the correctness of the

compilation would be compromised. For instance, to compile an assignment a := b, it is crucial

to know the types of variables a and b, in order to determine their exact size, and copy the right

number of bytes. Of course, this type information must be available at compile-time, hence the

emphasis is on static typing, here. From this standpoint, strong and weak typing are equally

acceptable, provided that typing violations are explicitly mentioned in the source code.

Given a strong type system with static checking, both approaches can be combined in a single

language, as in Algol-68, Pascal or Modula-2 for instance. This gives the best of both worlds: type

safety in a well-compiled language. However, it seems di�cult to achieve the same results with

more powerful type systems than the one of Pascal. Using types to determine the size (and other

relevant information) of a value works �ne when every value has exactly one type. This condition

is too restrictive in practice: one cannot write \generic" functions once for all and then apply them

to data of several types, provided that it makes sense. For instance, a sorting function should be

able to operate on many kinds of arrays (e.g. arrays of integers and arrays of strings), assuming a

suitable comparison function is provided.

Therefore, many advanced type systems lift the restriction that every value has a unique,

statically-known type, through the introduction of concepts such as type abstraction, subtyping,

inheritance, and polymorphism. See Cardelli and Wegner's [5] for a uniform presentation of these

features. In the following, I concentrate on polymorphism, as in ML [12]. Polymorphic type

systems allow type expressions to contain universally quanti�ed type variables. For instance, a

sorting function should, for all types T , take an array of elements of type T and return another

array of elements of type T , given in addition an ordering predicate over T , that is a function

taking a pair of elements of type T and returning a boolean. Its polymorphic type is therefore

8T: (T � T ! Bool)! Array(T)! Array(T). As the quanti�cation implies, the type variable T

can be substituted by any actual type, such as Int or String. In a sense, the type formula given

above summarizes all the possible types for the sorting function.

2 1 INTRODUCTION

When a value can safely belong to several types, we cannot always determine statically all its

characteristics. In the previous example, the sorting function is likely to copy elements of the array

given as parameter, but the type of these elements can be any instance of the type variable T , that

is any type. Therefore, we do not know at compile-time how many bytes to move to perform the

copy. Consider two solutions to this problem.

One is to defer the compilation of polymorphic function until they are actually applied to

values of known types. Then, we can deduce the type which the polymorphic function is used

with, and therefore get all the information (e.g. sizes) we need to compile. Of course, we will

have to compile several specialized versions of a polymorphic functions, if it is used with several

di�erent types. This technique is often used for Ada's \generics". Its strength is that it allows

the use of e�cient representations, and the production of good code (as e�cient as if the function

was monomorphic). However, it results in code duplication and loss of separate compilation. In

addition, it is hard to maintain the illusion that polymorphic functions are still �rst-class objects.

For instance, compilation of polymorphic functions built on top of other polymorphic functions,

or functions taking polymorphic objects as arguments must be deferred in turn. This may lead to

an explosion in the number of specializations of a polymorphic function we have to compile|this

number could even be in�nite, as in the following example, written in ML syntax:

datatype 'a chain = Empty | Cell of 'a * 'a list chain;

fun length_of_chain Empty = 0

| length_of_chain (Cell(x,rest)) = 1 + length_of_chain rest;

The other approach to polymorphic compilation is to revert to uniform data representations.

That is, data representation for all types share a common format, allowing \generic" operations

such as parameter passing, function return, assignment, : : : to be compiled without knowing the

type of the values they manipulate. In particular, all representations must have the same size,

usually one machine word, and any data which does not �t in one word has to be heap-allocated

and represented by a pointer (assuming pointers do �t in one word). In addition, the calling

conventions must be exactly the same for all functions. With these representation constraints, type

information is no longer needed to generate correct code, and compiling polymorphic functions is

no longer a problem. This approach is used in most implementations of ML to date.

The main drawback of the second approach is that uniform representations are not as e�cient

as the kind of specialized representations used in monomorphic languages. First, all data which does

not �t naturally in one word must be heap-allocated. This is much more expensive than carrying

around multi-word representations in several registers, resulting in high heap consumption and

frequent garbage collection. Second, communications across function calls are not very e�cient: a

function returning a oating-point number, just computed in a oating-point register, has to copy

it in the heap and return a pointer to it, only to have the callee dereference that pointer, and reload

the number in a oating-point register before using it.

This use of uniform data representations is not the main reason why current ML compilers do

not produce as e�cient code as, say, Modula compilers. However, as modern compiling techniques

are applied to the ML language, I think this representation problem will show up as a serious

bottleneck for e�cient compilation of ML, and similarly for other polymorphic languages.

In this paper, I set out to reconcile the safety o�ered by strong static typing, the convenience

and conceptual cleanliness of having polymorphic functions compiled only once, just like regular

functions, and the e�ciency of specialized data representations. Since the �rst two requirements

3

imply polymorphic functions must work on uniform representations anyway, the third requirement

has to be relaxed slightly. In this paper, I attempt to mix uniform and specialized representations

in the implementation of a polymorphic language. It is intended that monomorphic functions work

only on specialized representations, the uniform representations being used only to communicate

with polymorphic functions. The main question is, then, How can one infer where to insert the

necessary conversions between representations?

The remainder of the paper is organized as follows: section 2 presents the problem of data

representation in the case of a monomorphic calculus. Uniform and specialized representations are

contrasted by giving two compilation schemes for a simple stack-based abstract machine. This is

mostly implementor's wisdom, but presented in a uniform setting. Using the same approach, sec-

tion 3 tackles the representation problem in the case of a polymorphic calculus. The main novelty

of this paper|combining polymorphism and specialized representations|is informally presented

here, then formalized using an intermediate calculus, with a restricted notion of polymorphism.

Section 4 aims at showing that specialized representations can be pro�tably used in the ML lan-

guage. To this end, the main features of the type system of ML are recalled, and their compatibility

with specialized representations checked. Section 5 presents the interactions between data repre-

sentation and garbage collection, which is required by most modern programming languages. We

show that specialized representations do not preclude garbage collection, and that they alleviate

the need for tagging|a costly operation. Finally, we give a few concluding remarks in section 6

2 The monomorphic case

In this section, we present the problem of data representation in the simple case where every term

has exactly one type, and this type is known at compile-time.

2.1 A simply-typed language

We consider a small language based on the simply-typed �-calculus with constants. The only data

structures are pairs. The constants include integer and oating-point numbers, of base types Int

and Float, as well as primitive operations such as succ_int and add_float.

The syntax of this calculus is as follows. We write i for an integer, f for a oating-point number,

c for a constant, x or y for a variable, a or b for terms, and A, B for types.

c ::= i j f j succ int j add float j : : :

a ::= c j x j �x :A: b j b(a) j (a; b) j a:fst j a:snd

A ::= Int j Float j A! B j A�B

Typing rules are classical. They are written in structural operational semantics style [15], as a

set of axioms and inference rules de�ning the judgement \under assumptions E, term a has type

A", written E ` a : A. The typing environment E consists in a sequence of assumptions of the form

x : A, meaning that variable x is assumed to have type A. For each constant c, we write T (c) for its

associated type; in particular, T (i) = Int, T (f) = Float, T (add float) = Float�Float! Float,

and so on.

E ` c : T (c) E

1

; x :A;E

2

` x : A

4 2 THE MONOMORPHIC CASE

U

E

(i) = Const(i)

U

E

(f) = Const(hf

low

; f

high

i)

U

E

(x) = Access(pos

x

(E))

U

E

(�x :A: b) = Abstr(U

x:A;E

(b); Return)

U

E

(b(a)) = U

E

(b);U

E

(a); Apply

U

E

(a; b) = U

E

(a);U

E

(b); Pair

U

E

(a:fst) = U

E

(a); First

U

E

(a:snd) = U

E

(a); Second

U

E

(add float(a; b)) = U

E

(a);U

E

(b); AddFloat

U

E

(add float) = Abstr(Access(0); First; Access(0); Second;

AddFloat; Return

)

Figure 1: Compilation scheme with uniform representations

x :A;E ` b : B

E ` �x :A: b : A! B

E ` b : A! B E ` a : A

E ` b(a) : B

E ` a : A E ` b : B

E ` (a; b) : A�B

E ` a : A� B

E ` a:fst : A E ` a:snd : B

2.2 Evaluation using uniform representations

We now give a compilation scheme for this small language. The target machine is a stack-based

machine with environments, where functional values are represented by closures. Call-by-value is

assumed, to be consistent with the strict semantics of ML. This machine is very close to Landin's

SECD [10] and Cardelli's FAM [3]. The compilation scheme is given in �gure 1. It is straightforward,

except maybe for the treatment of variables. The value of a variable is to be found at run-time in

the environment (a tuple of values). To access this variable, we need to know its position inside this

tuple. That's the raison d'être of the compilation environment E, similar in structure to typing

environments: it records the name of all free variables, in the order they will appear in the run-time

environment. Then, the position of a variable x in an environment described by E is simply:

pos

x

(;) is unde�ned

pos

x

(x :A;E) = 0

pos

x

(y :A;E) = 1 + pos

x

(E)

This simple compilation scheme does not make use of typing information. This fact has deep

consequences on the way data are represented in the machine, namely that all data must �t in one

word. Indeed, the functions �x :A: x, for all types A, have exactly the same code, and are applied in

exactly the same way. This means that the instructions to apply a function to an argument, fetch

2.3 Ine�ciencies of uniform representations 5

Code Stack Environment

Before Const(v); C S

After C v; S

Before Access(n); C S = hv

1

; : : : ; v

n

; : : :i

After C v

n

; S

Before Abstr(C

1

); C S

After C hhC

1

i; i; S

Before Apply; C v; hhC

1

i; h�

1

ii; S

After C

1

hCi; ; S hv;�

1

i

Before Return; C v; hC

0

i;

0

; S

After C

0

v; S

0

Before Pair; C v

2

; v

1

; S

After C hv

1

; v

2

i; S

Before First; C hv

1

; v

2

i; S

After C v

1

; S

Before Second; C hv

1

; v

2

i; S

After C v

2

; S

Before AddFloat; C hf

0

low

; f

0

high

i; hf

low

; f

high

i; S

After C h(f + f

0

)

low

; (f + f

0

)

high

i; S

Figure 2: An abstract machine with uniform representations

a value from the environment, and returning a value, must operate uniformly on data of any type.

This implies that all data representations have the same size, and in case of register machines with

several register classes, that they all use the same register class.

As a consequence, data which do not �t in one word are allocated in the heap, and handled

through a pointer. (We assume that any pointer �ts in one word). We write hSi for a pointer to the

sequence of words S, located in the heap. For instance, the pair of values v

1

and v

2

is represented

by hv

1

; v

2

i, and similarly for closures. Regarding constants, we assume that integers may �t in one

word, but that high-precision oating-point numbers f require two words, written f

low

and f

high

,

therefore f is represented by hf

low

; f

high

i.

These representations lead to the transition function given in �gure 2.

2.3 Ine�ciencies of uniform representations

The evaluation mechanism presented above is simple, but not very e�cient. As an example, let us

consider the function f(x; y) = x+2y, where x and y are reals, represented in oating-point. Since

our calculus does not directly support functions with several arguments, some transformation is

required. We can make it into a function taking a pair:

f

pair

= �z : Float� Float: add float(z:fst; add float(z:snd; z:snd))

or into a function taking x and returning another function (this technique is known as currying):

f

cur

= �x : Float: �y : Float: add float(x; add float(y; y)):

6 2 THE MONOMORPHIC CASE

S

E

(i

Int

) = Const(i)

S

E

(f

Float

) = Const(f

high

); Const(f

low

)

S

E

(x

A

) = Access(p+ s� 1); : : : ; Access(p)

where p = pos

x

(E) and s = size(A)

S

E

(�x :A: b

B

) = Abstr(S

x:A;E

(b

B

); Return

size(B)

)

S

E

(b(a

A

)) = S

E

(b);S

E

(a); Apply

size(A)

S

E

(a; b) = S

E

(a);S

E

(b)

S

E

(a

A�B

:fst) = S

E

(a); First

size(A);size(B)

S

E

(a

A�B

:snd) = S

E

(a); Second

size(A);size(B)

S

E

(add float(a; b)) = S

E

(a);S

E

(b); AddFloat

S

E

(add float) = Abstr(Access(0); Access(1); Access(2); Access(3);

AddFloat; Return

2

)

Figure 3: Compilation scheme with specialized representations

Both versions are ine�cient in terms of heap allocation and memory accesses. First, each oating-

point addition must allocate two words in the heap to store its result, and perform three memory

accesses. This is especially absurd in the case of the innermost addition, whose result is used only

once, by the next instruction. Admittedly, a simple analysis of the code could detect that, and

avoid allocating the intermediate result. But the �nal result must be allocated anyway, as required

by the calling convention.

The passing of the two parameters is also ine�cient. In the case of the uncurried form, the

caller has to build a pair of the two arguments, which means allocating two words in the heap

and performing two memory writes, only to have the callee discard the pair and solely use its

components, at the cost of one memory access for each use of a parameter. In the case of the

curried form, the main aw is the building of an intermediate closure between the passing of the

�rst and the second argument. (This closure corresponds to the partial application of the function

to its �rst argument.)

To be more e�cient, it is clear now that we have to lift the restriction that any value must

either �t in one word or be allocated, and be able to handle unallocated multi-word values. To

do so, we need to statically keep track of the size of all values and results. (In case of a register

machine with several classes of registers, we would have to record the suitable register class for each

value). Obviously, all this information is already contained in the typing of the program; what we

shall present now is a compilation scheme taking advantage of the types.

2.4 Evaluation using specialized representations

The new compilation function is given in �gure 3. It corresponds to the case where data rep-

resentations are as \at" as possible: oating-point numbers are not allocated, pairs are simple

concatenations of the sequences of words representing their components, and for closures, only the

2.4 Evaluation using specialized representations 7

Code Stack Environment

Before Const(v);C S

After C v; S

Before Access(n); C S = hv

1

; : : : ; v

n

; : : :i

After C v

n

; S

Before Abstr(C

1

); C S

After C hC

1

i; ; S

Before Apply

i

; C v

i

; : : : ; v

1

; hC

1

i; hE

1

i; S

After C

1

hCi; ; S hv

1

; : : : ; v

i

; E

1

i

Before Return

i

; C v

i

; : : : ; v

1

; hC

0

i;

0

; S

After C

0

v

i

; : : : ; v

1

; S

0

Before First

i;j

; C w

j

; : : : ; w

1

; v

i

; : : : ; v

1

; S

After C v

i

; : : : ; v

1

; S

Before Second

i;j

; C w

j

; : : : ; w

1

; v

i

; : : : ; v

1

; S

After C w

j

; : : : ; w

1

; S

Before AddFloat; C f

0

low

; f

0

high

; f

low

; f

high

; S

After C (f + f

0

)

low

; (f + f

0

)

high

; S

Figure 4: An abstract machine with specialized representations

environment tuple is allocated, but the pair of the code pointer and the environment pointer is

unallocated.

We use the convention that all terms are subexpressions of a given closed term a

0

, the whole

program. We write a

A

to indicate that a was given the type A in the (unique) typing derivation

of a

0

, in the empty environment. This annotation is used to determine the size (number of words

used in the representation) of data of type A, which determines in turn the position of the �rst

word of a variable x in the run-time environment:

size(Int) = 1 pos

x

(;) is unde�ned

size(Float) = 2 pos

x

(x :A;E) = 0

size(A! B) = 2 pos

x

(y :A;E) = size(A) + pos

x

(E)

size(A�B) = size(A) + size(B)

The transition function for the corresponding machine is given in �gure 4.

With this new evaluation mechanism, the previous example function (f(x; y) = x+2y) executes

much more e�ciently. The uncurried version takes as argument an unallocated pair of unallocated

oating-point numbers, that is, four words on the stack. Intermediate results are held in the stack,

without any heap allocation or heap accesses. The �nal result, an unallocated oat, is returned to

the caller as two words on top of the stack. The curried version bene�ts similarly from unallocated

oats. In addition, the intermediate closure returned to the caller between the passing of the �rst

and second arguments is not allocated either, but left as two words on the stack (a code pointer,

an environment pointer), ready to be applied to the second argument.

8 3 THE POLYMORPHIC CASE

2.5 Performance comparisons

Specialized representations lead to less heap allocation and less memory accesses than uniform

representations. In the case of uniform representations, multi-word values are always allocated in

the heap when created, and reloaded when used, while this is not true in the case of specialized

representations.

On the other hand, specialized representations generate more stack or register moves. The

savings in heap accesses far outweights them, except in extreme cases where some data are discarded.

For instance, applying a function taking a 10-word argument and returning a constant requires ten

stack moves using specialized representations, and only one using uniform representations. This

does not happen frequently in actual programming, however.

3 The polymorphic case

3.1 A polymorphic language

We now consider a polymorphic language based on the second-order �-calculus, as introduced

by Girard [7] and independently by Reynolds [16]. At the level of types, we introduce universal

quanti�cation, with the intent that a term of type 8X:A[X] can be used with types A[B] for all

types B. At the level of terms, the corresponding elimination construct is application of a term

a to a type B, written a(B). The introduction construct is abstraction over a type variable X ,

written �X:A.

a ::= c j x j �X: a j a(B) j �x :A: b j b(a) j (a; b) j a:fst j a:snd

A ::= X j 8X:A j Int j Float j A! B j A�B

Second-order �-calculus is one of the purest and most general approaches to polymorphism,

but very few programming languages implement it in its full generality (Poly [11], Quest [4]).

The ML language proposes a restricted version of it: it requires that universal quanti�ers be in

prenex position: that all type expressions are of the form 8X

1

: : :8X

n

: A, where A does not contain

quanti�ers. This makes type inference possible, using the well-known Damas-Milner algorithm [6],

while type inference for second-order �-calculus is still an open problem. In the following, we do

not need the prenex quanti�cation hypothesis, and therefore consider arbitrary quanti�cation.

Informally, typechecking rules are those of the simply-typed language extended by the following

two rules:

E ` a : A

E ` �X: a : 8X:A

E ` a : 8X:A

E ` a(B) : AfX Bg

The actual rules are slightly more complex, since we must take care of the scope of type variables.

This means that not all well-formed type expressions are valid types in a given context, and similarly

for environments. We use two auxiliary predicates, E ` A type, meaning that A is a valid type in

environment E, and ` E env, meaning that E is a valid environment.

` E env

E ` c : T (c)

` E

1

; x :A;E

2

env

E

1

; x :A;E

2

` x : A

3.2 Evaluation using uniform representations 9

E ` A type E; x :A ` b : B

E ` �x :A: b : A! B

E ` b : A! B E ` a : A

E ` b(a) : B

E;X type ` a : A

E ` �X: a : 8X:A

E ` a : 8X:A E ` B type

E ` a(B) : AfX Bg

E ` a : A E ` b : B

E ` (a; b) : A�B

E ` a : A� B

E ` a:fst : A E ` a:snd : B

The auxiliary predicates are de�ned as follows:

` ; env

` E env X =2 Dom(E)

` E;X type env

` E env x =2 Dom(E) E ` A type

` E; x :A env

` E env

E ` Int type E ` Float type

` E

1

; X type; E

2

env

E

1

; X type; E

2

` X type

E;X type ` A type

E ` 8X:A type

E ` A type E ` B type

E ` A! B type E ` A�B type

3.2 Evaluation using uniform representations

In the case where all data have uniform, single-word representations, the abstract machine needs no

special provision to accommodate polymorphic programs. The evaluation mechanism of section 2.2

already implements polymorphism in some sense, since, for instance, the term �x:Int: x is compiled

in such a way that it can be applied to data of any type, not just Int, and return it unmodi�ed.

Therefore, we can use the abstract machine of �gure 2 as is, along with the compilation scheme of

�gure 1. We just have to add the two following cases, stating that abstraction on a type variable

and application to a type have no computational contents (in this case, they are mere typechecking

annotations):

U

E

(�X: a) = U

E

(a)

U

E

(a(B)) = U

E

(a)

3.3 Evaluation using specialized representations

Let us try now to implement a polymorphic language with non-uniform data representations, such

as multi-word values. Things are not as easy as in the monomorphic case. We already dismissed

the approach of compiling several specializations of a polymorphic term on demand. Therefore,

when compiling a polymorphic term, we are left with no alternative but to assume that all values

of unknown types (that is, whose type is a type variable) are represented in a uniform way, as in

the previous section. However, when we have more information on the type of a value, we would

like to use specialized representations, for the sake of e�ciency. In particular, we hope to compile

fully monomorphic terms as e�ciently as in the case of the monomorphic calculus.

10 3 THE POLYMORPHIC CASE

This requirement implies that every value has two representations, a uniform one, to be used

for communication with polymorphic functions, and a specialized, e�cient one, possibly spanning

several words and taking advantage of special hardware, to be used the rest of the time. We refer to

the former as \the wrapped representation", and to the latter as \the unwrapped representation."

When we apply a polymorphic function to a value of known type, it is likely that the value will

be unwrapped, while the function expects it wrapped. Therefore, the compiler will sometimes

have to insert explicit coercions between the two representations; we write wrap

A

and unwrap

A

for

the coercions operating on values of type A. (We mention the type A explicitly to emphasize that

those coercions are not polymorphic functions operating uniformly on all data, but rather functions

de�ned in an ad-hoc way for each type A.)

Consider the example of the reverse pair function:

reverse pair = �X:�Y: �z :X � Y: (z:snd; z:fst):

Since the types of z:fst and z:snd are unknown, these values must be wrapped. However, z

itself is known to be a pair, so there is no need to wrap it. Therefore, the calling conventions of

reverse pair is as follows: it expects two words on the stack, which are wrapped representations of

z:fst and z:snd, and returns two words on the stack. Now, let us consider the following application:

reverse pair (Float) (Int� Float) (3:14; (7; 2:718)):

We assume that the two oating-point constants are allocated \at", as well as the two pairs. The

argument is therefore represented by the �ve words:

(3:14)

low

; (3:14)

high

; 7; (2:718)

low

; (2:718)

high

:

Before passing it to reverse pair, some transformations are required: wrap the �rst component

of the pair (the �rst two words,) resulting in the single word h(3:14)

low

; (3:14)

high

i; similarly for the

second component, leading to h7; (2:718)

low

; (2:718)

high

i. The resulting two words are a suitable

argument for reverse pair. On return, the stack holds the two words:

h7; (2:718)

low

; (2:718)

high

i; h(3:14)

low

; (3:14)

high

i:

Two steps of unwrapping lead to the 5-tuple 7; (2:718)

low

; (2:718)

high

; (3:14)

low

; (3:14)

high

, which is

the unwrapped representation of ((7; 2:718); 3:14), as expected.

Let us now consider an example involving higher-order functions:

map pair = �X:�Y: �f :X ! Y: �z :X �X: (f z:fst; f z:snd)

int of float : Float! Int

map pair (Float)(Int) (int of float) (3:14; 2:718)

According to our principles, the functional map pair expects its parameter f to be a function

taking one word (a wrapped representation) as argument, and returning one word (another wrapped

representation). In addition, the parameter z should be an unwrapped pair of two wrapped values,

as previously. However, the int of float primitive function expects an unwrapped oating-point

argument (two words), and produces an unwrapped integer. Therefore, map pair cannot be applied

directly to int of float; it must be given a version of int of float which takes a wrapped

3.3 Evaluation using specialized representations 11

oating-point number as argument, and returns a wrapped integer as result, that is, with obvious

notations:

�x : Wrapped(Float): wrap

Float

(int of float(unwrap

Float

(x))):

The rest of this example proceeds as above. The important point is that higher-order functions

may require their functional arguments to be transformed in order to accommodate wrapped argu-

ments or results instead of unwrapped ones, and vice-versa. This transformation does not require

recompilation of the function. It merely puts some \stub code" around it, performing the right

wrap and unwrap operations.

The rest of this section formalizes a compilation scheme based on the ideas above. This is

a two-step process: �rst, a translation into another polymorphic calculus, where the duality of

wrapped/unwrapped representations is taken into account; then, a code generation phase, combin-

ing cases from section 2.4 for the unwrapped values and section 2.2 for the wrapped, uniformly

represented values.

3.3.1 A restricted polymorphic calculus

First, the distinction between wrapped and unwrapped representations is made explicit in the

types, through the introduction of a new type operator, Wrapped. Informally, for all types A,

the type Wrapped(A) contains all wrapped representations of values of type A. At the level of

terms, we add the operators wrap

A

and unwrap

A

, which map A to Wrapped(A) and conversely.

Then, we restrict polymorphism by requesting that type variables range over the class of wrapped

types, that is all Wrapped(A) where A is a type, instead of the full class of types. By analogy

with bounded quanti�cation [5], we use the notation 8X � Wrapped: A for this restricted universal

quanti�cation. Conversely, for type application a(B), we require that B is a wrapped type, that

is either Wrapped(B

0

), or a type variable Y . The syntax of the restricted calculus is therefore as

follows:

a ::= c j x j wrap

A

(a) j unwrap

A

(a) j �X � Wrapped: a

j a(B) j �x :A: b j b(a) j (a; b) j a:fst j a:snd

A ::= X j Wrapped(A) j 8X � Wrapped: A j Int j Float j A! B j A� B

The typing rules are almost the same as those of section 3.1, with additional rules for the

Wrapped, wrap and unwrap operators, and a di�erent treatment of type application. To help

distinguishing both calculi, we use

r

` instead of ` for the typing judgements of this calculus. Here

are the rules that di�er from the one of the general calculus:

E

r

` a : A

E

r

` wrap

A

(a) : Wrapped(A)

E

r

` a : Wrapped(A)

E

r

` unwrap

A

(a) : A

E;X type

r

` a : A

E

r

` �X � Wrapped: a : 8X � Wrapped: A

E

r

` a : 8X � Wrapped: A E

r

` Y type

E

r

` a(Y) : AfX Y g

E

r

` a : 8X � Wrapped: A E

r

` B type

E

r

` a(Wrapped(B)) : AfX Bg

12 3 THE POLYMORPHIC CASE

E;X type

r

` A type

E

r

` 8X � Wrapped: A type

E

r

` A type

E

r

` Wrapped(A) type

3.3.2 Translation into the restricted calculus

Here, we provide translations for terms and types of the original, polymorphic calculus into the

restricted calculus given above. The translation function is written []. On types, it simply consists

in restricting all quanti�cations, as follows:

[8X:A] = 8X � Wrapped: [A]

and then it is extended as a congruence over all types. On terms, the translation transforms

application to a type, so as to generate the kind of \stub" code needed in the example above. We

have:

[�X: a] = �X � Wrapped: [a]

[a

8X:A

(B)] = T

X B

([a](Wrapped[B])

A

)

Again, it is extended as a congruence over all terms. The hard work is done by the twin auxiliary

functions T

X B

(a

A

) and T

X B

(a

A

), de�ned inductively on A in �gure 5. They are responsible

for specializing X to B in any term a of type A. The function T deals with positive occurences of

the coercion, and T with negative occurences. When A = X , we simply unwrap or wrap a. When

X is not free in A, and especially when A is a base type, nothing needs to be done. When A is a

product type, we specialize recursively its two components, and pair them together. When A is a

function type, we build a function that takes an argument x, specializes it recursively, applies a to

x, and specializes the result. To specialize the argument x, we switch to the other transformation

(T instead of T and conversely), because of the contravariance of the arrow. The case of a universal

type is similar, but easier.

An example of translation is given in �gure 6. The translation usually creates many �-redexes,

which we reduced on the y for the sake of readability.

It remains to show that this translation is sensible, in particular, that it preserves semantics.

First, we can map terms of the restricted calculus back to the full calculus by erasing the wrap and

unwrap nodes, and the bounded quanti�cations. It is easy to see that for all a, the translation [a]

is mapped back to a term which reduces to a. This means that if we identify the wrapped and

unwrapped representations, a and [a] produce the same results. It remains to show that in [a] we

do not use a wrapped value when an unwrapped one is expected and conversely. However, such

an error is caught by the type system of the restricted calculus. Hence, we just have to prove that

the translation of a well-typed term is well-typed. The following lemma expresses the correctness

of the auxiliary translation functions with respect to types.

Lemma 1 Let a be a term, E be an environment of the restricted calculus, and A, B be two types

of the full polymorphic calculus.

� If E

r

` a : [A]fX Wrapped[B]g, then E

r

` T

X B

(a

A

) : [AfX Bg].

� If E

r

` a : [AfX Bg], then E

r

` T

X B

(a

A

) : [A]fX Wrapped[B]g.

3.3 Evaluation using specialized representations 13

T (a

X

) = unwrap

[B]

(a)

T (a

Y

) = a if X 6= Y

T (a

Int

) = a

T (a

Float

) = a

T (a

A

1

!A

2

) = �x : [A

1

fX Bg]: T (a(T (x

A

1

))

A

2

) where x not free in a

T (a

A

1

�A

2

) = (T (a:fst

A

1

); T (a:snd

A

2

))

T (a

8X:A

) = a

T (a

8Y:A

) = �Y � Wrapped: T (a(Y)

A

)

T (a

X

) = wrap

[B]

(a)

T (a

Y

) = a if X 6= Y

T (a

Int

) = a

T (a

Float

) = a

T (a

A

1

!A

2

) = �x : [A

1

]fX Wrapped[B]g: T (a(T (x

A

1

))

A

2

) where x not free in a

T (a

A

1

�A

2

) = (T (a:fst

A

1

); T (a:snd

A

2

))

T (a

8X:A

) = a

T (a

8Y:A

) = �Y � Wrapped: T (a(Y)

A

)

Figure 5: Generation of stub code to accommodate restricted polymorphism. (T (a

A

) and T (a

A

)

abbreviate T

X B

(a

A

) and T

X B

(a

A

), respectively.)

Proof: The proof is by induction on A. Since X and B are �xed, we abbreviate T

X B

(a

A

) and

T

X B

(a

A

) as T (a

A

) and T (a

A

), respectively. The cases A = Int, A = Float, A = Y 6= X are

trivial. In the case A = X , the propositions reduce to

E

r

` a : Wrapped([B])

E

r

` unwrap

[B]

(a) : [B]

E

r

` a : [B]

E

r

` wrap

[B]

(a) : Wrapped([B])

which are special cases of the typing rules for wrap and unwrap. The cases A = A

1

� A

2

and

A = 8Y:A

0

are straightforward by induction hypothesis. Finally, in the case A = A

1

! A

2

, we can

14 3 THE POLYMORPHIC CASE

T

X Float

(double

(X!X)!(X!X)

)

= �f : Float! Float: T (double(T (f

X!X

))

X!X

)

= �f : Float! Float: �x : Float:

unwrap

Float

(double (�y : Wrapped(Float): wrap

Float

(f(unwrap

Float

(y))))

(wrap

Float

(x))

Hence:

[double

8X:(X!X)!(X!X)

(Float)(�x : Float: add float(x)(1))(3:14)]

�

! unwrap

Float

(double (�y : Wrapped(Float): wrap

Float

(add float(unwrap

Float

(y))(1)))

(wrap

Float

(3:14))

Figure 6: An example of translation

build the following derivation:

E; x : [A

1

fX Bg]

r

` x : [A

1

fX Bg]

E; x : [A

1

fX Bg]

r

` T (:

A

1

)[A

1

]fX Wrapped[B]g

a : [A

1

! A

2

]fX Wrapped[B]g

E; x : [A

1

fX Bg]

r

` a(T (x

A

1

)) : [A

2

]fX Wrapped[B]g

E; x : [A

1

fX Bg]

r

` T (a(T (x

A

1

))

A

2

) : [A

2

fX Bg]

E

r

` �x : [A

1

fX Bg]: T (a(T (x

A

1

))

A

2

) : [(A

1

! A

2

)fX Bg]

that leads to the �rst expected result E

r

` T (a

A

) : [AfX Bg]. Here, double horizontal bars

correspond to the use of the induction hypothesis with A = A

1

or A = A

2

. A symmetric derivation,

where T and T are exchanged, leads to the second expected result. 2

Proposition 1 Let a, A, E be a term, a type, and an environment of the full calculus. If E ` a : A,

then in the restricted calculus, [E]

r

` [a] : [A].

Proof: A trivial inductive argument on the lengths of the proofs shows that ` E env implies

r

` [E] env, and E ` A type implies [E]

r

` [A] type. Then, the proposition above can be proved by

induction on the length of the proof of E ` a : A. The sole interesting case is the one of application

to a type. Then, the original proof is:

.

.

.

E ` a : 8X:A

.

.

.

E ` B type

E ` a(B) : AfX Bg

3.4 Performance comparison 15

Code Stack Environment

Before Box

i

; C v

1

; : : : ; v

i

; S

After C hv

1

; : : : ; v

i

i; S

Before Unbox

i

; C hv

1

; : : : ; v

i

i; S

After C v

1

; : : : ; v

i

; S

Figure 7: Additional instructions for wrapping and unwrapping.

Using the induction hypothesis and the previous lemma, we get the following derivation:

[E]

r

` [a] : 8X: [A] [E]

r

` [B] type

[E]

r

` [a](Wrapped[B]) : [A]fX Wrapped[B]g

[E]

r

` T

X B

([a](Wrapped[B])

A

) : [AfX Bg]

which leads to the desired result. 2

3.3.3 Compiling the restricted calculus

To compile the restricted calculus, we use the same abstract machine with specialized representa-

tions as in section 2.4 (�gure 4). The compilation scheme is almost the same. We simply state

that the size of a value of type Wrapped(A) is always one, and give two additional rules for the

translation of wrap and unwrap. The only constraints are that unwrap

A

must be the inverse of

wrap

A

, and wrap

A

must produce one-word data. A simple solution for wrap

A

is to heap-allocate

data occupying more than one word, and keep one-word data unchanged; symmetrically, unwrap

A

performs nothing if size(A) = 1, and dereferences the value of a otherwise. We add the two corre-

sponding instructions Box and Unbox in the abstract machine (�gure 7). The resulting compilation

scheme is given in �gure 8, with the size function de�ned as follows:

size(Int) = 1

size(Float) = 2

size(A! B) = 2

size(A�B) = size(A) + size(B)

size(Wrapped(A)) = 1

3.4 Performance comparison

As in the case of the monomorphic calculus, specialized representations lead to less heap allocation

and pointer dereferencing, at the expense of more stack or register moves. In the case of uniform

representations, each primitive performs implicit unwrap operations on its arguments, and wrap

operations on its results. Using specialized representations, we managed to remove some wrap and

unwrap operations when we have enough type information.

16 3 THE POLYMORPHIC CASE

P

E

(i

Int

) = Const(i)

P

E

(f

Float

) = Const(f

high

); Const(f

low

)

P

E

(x

A

) = Access(p+ s� 1); : : : ; Access(p)

where p = pos

x

(E) and s = size(A)

P

E

(wrap

A

(a)) = P

E

(a) if size(A) = 1

P

E

(wrap

A

(a)) = P

E

(a); Box

size(A)

if size(A) > 1

P

E

(unwrap

A

(a)) = P

E

(a) if size(A) = 1

P

E

(unwrap

A

(a)) = P

E

(a); Unbox

size(A)

if size(A) > 1

P

E

(�x :A: b

B

) = Abstr(P

x:A;E

(b

B

); Return

size(B)

)

P

E

(b(a

A

)) = P

E

(b);P

E

(a); Apply

size(A)

P

E

(�X: a) = P

E

(a)

P

E

(a(B)) = P

E

(a)

P

E

(a; b) = P

E

(a);P

E

(b)

P

E

(a

A�B

:fst) = P

E

(a); First

size(A);size(B)

P

E

(a

A�B

:snd) = P

E

(a); Second

size(A);size(B)

P

E

(add float(a; b)) = P

E

(a);P

E

(b); AddFloat

P

E

(add float) = Abstr(Access(0); Access(1); Access(2); Access(3);

AddFloat; Return

2

)

Figure 8: Compilation scheme for the restricted polymorphic calculus, mixing uniform and special-

ized representations.

It is hard to give more precise comparisons, due to the following fact: in the case of uniform

representation, wrapping and unwrapping are performed by the primitive operations, therefore

unwrapping (on the arguments) is delayed as much as possible, while wrapping (of the results)

is performed immediately. We say that with uniform representations, unwrapping is lazy, while

wrapping is eager. In case of specialized representations, wrapping is delayed until a value is passed

to a polymorphic function, while unwrapping the result of a polymorphic function is performed

as soon as possible. Hence, in the case of specialized representations, unwrapping is eager and

wrapping is lazy. This leads to a rather di�erent behavior, presumably favorable, since wrapping

is much more expensive than unwrapping.

On the negative side, it is true that the stub code inserted to change representations in the case

of functions introduces additional function calls. Reductions at compile-time can often eliminate

them, but for example if the function being transformed is a parameter of a functional, an additional

call will remain.

17

4 Toward actual programming languages

The highly stylized calculi used in previous sections are not yet close to actual programming lan-

guages. They lack many important features: the only data structures are pairs, there are neither

variants, nor general records; and recursive types are not allowed. In this section, we shall see how

to integrate these features into the calculus of the previous section, and what additional constraints

they put on the choice of data representations. Finally, we discuss the application to the ML

language.

4.1 Sum types

While the previous calculi have a rudimentary notion of records, they have no notion of the symmet-

ric data structure: variants (tagged unions). In typed calculi, variants are traditionally presented

by sum types A+B. The elements of that type are either of type A, with tag left, or of type B,

with tag right. The introduction constructs are the two constructors inleft and inright; the

elimination construct is pattern-matching on the tag.

E ` a : A E ` B type

E ` inleft(a) : A+ B

E ` A type E ` b : B

E ` inright(b) : A +B

E ` a : A+ B E; x :A ` c : C E; y :B ` d : C

E ` case a of inleft(x)! c j inright(y)! d : C

Values of a sum type A+B are usually represented as (tag, value) pairs. For instance, inleft(a)

is represented as (0; a), and inright(b) as (1; b). Pattern-matching is then a simple test on the �rst

component of the pair. Such pairs are not regular pairs, since the type of the second component

depends on the value of the �rst one (A if it is 0, B if it is 1). This is no problem if uniform

representations are used. In case of specialized representations, however, it may be the case that

an element of type A and an element of type B have incompatible representations (e.g. di�erent

sizes); therefore, elements of type A + B would have two incompatible representations, depending

on the value of the tag, which is not known at compile-time.

A �rst solution is to take a representation compatible with both the one of A and the one of B.

For instance, regarding the size of A+B, we could take

size(A+ B) = 1 + max(size(A); size(B))

so that the second component of the dependent pair is always large enough to contain an element

of A, or an element of B. This is the traditional implementation of variants in Pascal. The main

drawback is some waste of space when size(A) is not equal to size(B). This becomes serious when

the sums are heap-allocated, as parts of a large data structure.

Another solution is to systematically use uniform representations for the argument of a sum

constructor. That way, a sum is always represented by one word for the tag, and one word for

the argument, hence size(A + B) = 2. The necessary wrapping operations are performed by the

constructors inleft and inright.

18 4 TOWARD ACTUAL PROGRAMMING LANGUAGES

A recursive, A recursive, A not recursive, A not recursive

B recursive, B not recursive, B recursive, B not recursive

[A�B] Wrapped[A]� Wrapped[B] Wrapped[A]� [B] [A]� Wrapped[B] [A]� [B]

[a

A

; b

B

] (wrap

A

[a]; wrap

B

[b]) (wrap

A

[a]; [b]) ([a]; wrap

B

[b]) ([a]; [b])

[a

A�B

:fst] unwrap

A

([a]:fst) unwrap

A

([a]:fst) [a]:fst [a]:fst

[a

A�B

:snd] unwrap

B

([a]:snd) [a]:snd unwrap

B

([a]:snd) [a]:snd

Figure 9: Translation from general polymorphism to restricted polymorphism, in the presence of

recursive types

Both approaches are compatible with polymorphism. The compilation scheme given in sec-

tion 3.3 easily extends to sums, with two additional cases for the generation of stub code:

T (a

A

1

+A

2

) = case a of inleft(x)! inleft(T (x

A

1

))

j inright(y)! inright(T (y

A

2

))

and similarly for T (a

A

1

+A

2

).

4.2 Recursive types

Recursive types describe recursive data structures. In actual programming languages, they are

usually introduced through the ability to name types and to refer to that name in the de�nition

of the associated type. In a typed calculus, they arise when type expressions are not restricted to

be �nite trees any more, but allowed to be rational trees. We use the notation �X:A for cycles;

anywhere in a type expression, �X:A can be replaced by AfX �X:Ag, and conversely. For

instance, the type of lists of integers is �L: Unit+ Int�L, where Unit is a special type containing

exactly one value.

No other modi�cations of the type system are needed for recursive types. In particular, they

introduce no additional typing rules. The main di�culty with recursive types is that the de�nitions

we gave by induction on types are now possibly ill-founded: they should now read as a set of

recursive equations, which may have no solution. For instance, with a naive size function, the

size s of integer lists, de�ned as �L: Unit+ Int � L, must verify s = 1 + max(0; 1 + s), and this

equation has no positive solution. This corresponds to the well-known fact that lists cannot be

statically allocated \at"; pointers must be used somewhere. Indeed, if we de�ne integer lists as

�L: Unit+Int�Wrapped(L), the size s

0

of this type is now s

0

= 1+max(0; 1+1) = 3, as expected.

To guarantee that all recursive types can be represented, it is necessary to introduce additional

pointers in the representations. For instance, we may require that a value of a recursive type

must be heap-allocated, and represented by a pointer, if it is a component of a structure (product

or sum). This treatment can be integrated into the translation from general polymorphism to

restricted polymorphism, as shown in �gure 9.

Similarly, the stub code generated during the translation from general polymorphism to re-

stricted polymorphism may now involve recursive functions. For instance, the function f(a) =

4.3 Records and variants 19

T

X Float

(a

�Y:Unit+X�Y

), which specializes generic lists to lists of oats, is de�ned as:

f(a) = case a of inleft(n)! inleft(n)

j inright(p)! inright(unwrap

Float

(p:fst); f(p:snd))

That is, we should copy the list while applying the transformation unwrap

Float

to each of its

elements. This is not practical, since this copying takes time and space proportional to the size of

the original list, and is not correct when lists can be physically updated. Instead, we restrict further

the representations of sums and products, and require that their components be systematically

wrapped. This ensures that data structures never need to be recursively copied when converting

between uniform and specialized representations. In particular, we may now take:

T

X B

(a

A

1

�A

2

) = T

X B

(a

A

1

�A

2

) = a

T

X B

(a

A

1

+A

2

) = T

X B

(a

A

1

+A

2

) = a

We already came to that solution in the case of sums. For products, it may look overly restric-

tive. For instance, a pair of oating-point numbers cannot be represented \at" any more, and

requires heap-allocating both numbers. We shall see now how the introduction of general records

instead of mere pairs alleviates this problem.

4.3 Records and variants

Actual programming languages, such as ML, provide general records and variants as data structures

(\concrete types", in ML terminology), not only binary sums and binary products. Sums and

products allow better naming of the components of a data structure, as well as more precise control

over their types. For instance, coordinates in the plane could be described by the following record

type:

type coord2 = {x: Float; y: Float}

which is more precise than Float� Float. In particular, no polymorphic function can destructure

this record. Therefore, it can be represented e�ciently by four words allocated \at", without ever

having to copy it with its components wrapped.

However, it is still possible to de�ne polymorphic data structures by parameterizing a concrete

type declaration, using type variables. For instance, binary polymorphic sum and product can be

de�ned in the language as follows:

type X * Y = { fst: X; snd: Y };

type X + Y = inleft of X | inright of Y;

As we saw previously the components of such structures must use wrapped representations, in order

to avoid copying. A simple, natural way to ensure this, while preserving e�cient representations

for types such as coord2, is to say that the representation of a concrete type is chosen once for

all when it is de�ned. Components whose type is a type variable are, as usual, represented in

the uniform way. In other terms, parameterized concrete types have one representation, whatever

the parameters are: List(Int) and List(Float) and List(X) where X is a type variable all have

compatible representations. This ensures that no recursive copying of data structures is ever needed.

The necessary wrapping and unwrapping are performed by the primitives for creation and

access. To generate the right conversions, no special rules are needed: it su�ces to treat these

20 5 RELATION WITH GARBAGE COLLECTION

primitives as regular functions, possibly polymorphic. For instance, the projection .x for the type

coord2 can be given the type coord2! Float. Similarly, :fst has type 8X: 8Y:X � Y ! X , and

inleft has type 8X: 8Y:X ! X+Y . When these constructors are specialized to particular values

of X and Y , the translation technique of section 3.3 automatically inserts the right coercions.

4.4 Application to ML

We have already covered the main features of ML. They can be integrated into compilation using

specialized representations, at the cost of additional constraints on the representations. But it is

sometimes necessary to revert to uniform representations. One may fear that these constraints

are so restrictive that there is little bene�t from specialized representations. This is not the case,

however, as specialized representations address important weaknesses of ML implementations.

First of all, specialized representations allow e�cient operations on base types which do not �t

in a word, and in particular on oating-point numbers. This is an absolute requirement for any

general-purpose programming language.

Second, though in ML all functions have exactly one argument (and one result), specialized

representations makes it possible to pass a tuple of arguments to a function without heap-allocating

the tuple, but simply by putting its components on the stack or in registers. Thus we get the

e�ciency of functions with several arguments (and several results as well), without having to

modify the source language, nor restrict polymorphism in any way.

More generally, specialized representations allow monomorphic programs to be compiled just

as e�ciently as in traditional monomorphic languages, such as Modula for instance. The price

to pay for polymorphism is paid only by those programs that actually use it. This contrasts

with a tradition among high-level languages: that advanced features systematically hamper the

performance of programs, even if they are not used.

5 Relation with garbage collection

This short section outlines the interaction between data representation and garbage collection.

Independently of the algorithm used, garbage collection requires the ability to walk (parts of) the

memory graph. The collector must know the roots of the graph, that is, all statically-allocated

data containing pointers into the heap (e.g. registers, global variables, and the stack). Further,

given an object allocated in the heap, it must be able to �nd all pointers into the heap contained

in that object. Data representations must be designed to permit this memory graph walk.

5.1 Using tagged representations

In the case of dynamically-typed languages (Lisp, Smalltalk), interfacing with a garbage collector is

straightforward, since these languages already require all data to carry their own type at run-time,

in order to perform dynamic type checking, and to implement primitive operations such as the Lisp

predicates consp and integerp. This is achieved through some kind of tagging scheme. Here is a

simple one [8]: a value is a 32-bit word, representing either an integer or a pointer in the heap. The

integer i is represented by the bit-�eld 2i+ 1, hence the low-order bit of an integer is 1. Pointers

are word-aligned, hence their low-order bit is 0. They point to a one-word header, containing the

5.2 Using type information and untagged representations 21

size of the block, and one bit to say whether the block contains tagged values, possibly pointing to

other blocks, or unstructured data such as the characters of a string.

Tagging has several drawbacks on a conventional architecture. Tag bits waste space: integers

are limited to 31 bits, and one extra word is needed for each block in the heap. Tagging also involves

additional computation. Using the scheme above, multiplying two integers means shifting one to

the right, decrementing the other, multiplying as usual both intermediate results, and increment

the result.

5.2 Using type information and untagged representations

Static monomorphic typing makes tagging unnecessary, since the information whether a value is a

pointer or not is already contained in its type, and in case of a pointer, the size of the block pointed

to, and where pointers are located in the block as well. To communicate this information to the

garbage collector, the compiler can save in the object �le the structure of user-de�ned types, and

associate to each global variable (a code for) its type, and to each function the type and location of

its local variables. Then, using the stack frames to �nd active functions, the collector can determine

the type of each root of the memory graph, use it to �nd which are pointers and which are not,

�nd the types of all �elds of the blocks pointed to, and recurse.

However, propagating type information at GC-time may be costly, especially if the graph walk

is not depth-�rst. Therefore, in practice, blocks in the heap carry a header containing their type.

This header makes it possible to �nd the size of a block, and all the pointers it contains, without

having to propagate types. This header is added when the block is created, as in the tagged model.

However, no other tagging is needed on values. For instance, integers are 32-bit wide, and native

machine operations are used on them, since they cannot be confused with pointers, thanks to static

typing. This technique is used in some implementations of Modula-3 [13].

5.3 The polymorphic case

The addition of polymorphism reintroduces the problem of identifying pointers at GC-time: the

argument of a polymorphic function such as the identity function may be an integer as well as a

pointer, and therefore it seems necessary again to tag pointers and integers so that they cannot

have the same bit pattern. As a consequence, ML implementations usually use Lisp-like tagging,

just for the purpose of garbage collection; for instance, the tagging scheme described above is used

in Standard ML of New Jersey [2].

As pointed out by Appel [1], this can be avoided: the actual type of a polymorphic datum (such

as the parameter of the identity function) can be determined at GC-time by looking at the call

graph, and propagating actual types down it, using compile-time type information. But as in the

monomorphic case, types must then be propagated down the memory graph, and this is unrealistic

(Appel didn't implement it, either). Of course, it is not possible to precompute the types of the

blocks, as in the monomorphic case, since these types are not totally known at compile-time. For

instance, the function �X: �x :X: (x; x) builds a pair without knowing whether its components are

pointers or unboxed integers.

In the spirit of section 3.3, my approach is to mix tagged and untagged representations, and

reserve the tagged ones for values whose types are not statically known. It su�ces to require that

uniform representations are not only one-word wide, but also tagged so as to distinguish pointers

from unallocated values. In this model, if the type of a value is a type variable, then the value

22 6 CONCLUSIONS AND RELATED WORK

is correctly tagged, and a test on the tag shows whether it is a pointer or not. Otherwise, the

type is not a type variable, and then it contains enough information to guarantee that the value is

a pointer or not, without having to test the value at GC-time, and hence, to tag it. Conversely,

blocks are again adorned with a header containing their (static) type. This type may contain type

variables, but the transformations of section 3.3 ensures that the �elds whose types are statically

unknown are uniformly represented, hence tagged. In any case, it is possible to �nd all pointers

contained in a block, without having to propagate type information.

Tagging and untagging are performed when converting from specialized to uniform represen-

tations, and vice-versa, that is, by the wrap and unwrap operations. Using the tagging scheme

described above, we simply have to rede�ne wrap

Int

and unwrap

Int

, so that they convert from i to

2i+ 1 and conversely:

P

E

(wrap

Int

(a)) = P

E

(a); Const(1); ShiftLeftInt; Const(1); AddInt

P

E

(unwrap

Int

(a)) = P

E

(a); Const(1); ShiftRightInt

If size(A) > 1, wrap

A

allocates its argument in the heap and returns a pointer to it, already well-

tagged. The remaining case is size(A) = 1 and A 6= Int; in this case, wrap

A

does nothing, but

this is correct, since the only possibility is A = Wrapped(B), and by hypothesis, values of type

Wrapped(B) are always well-tagged.

6 Conclusions and related work

The techniques presented in this paper combine the cleanliness and expressiveness of unrestricted

polymorphism with the e�ciency of specialized representations. We developed one possible applica-

tion, getting better implementation of an existing polymorphic language, ML. The dual application

is to add full polymorphism to a conventional, Algol-like language while keeping e�cient compila-

tion of existing programs. One may hope that both approaches would converge toward languages

with powerful type systems and e�cient implementations, without putting strong constraints on

the type system (for instance, abstract data types, or records with subtyping are easily accommo-

dated), nor on the runtime system (an evidence is that interfacing with a garbage collector is still

possible).

Another interesting feature of our technique is to facilitate interfacing with existing code written

in another language, such as libraries written in C: adopting unwrapped representations which are

compatible with the ones of C (at least for the base types) alleviates the need for coercions between

C and ML data formats.

There is comparatively little work on the problem of data representations in high-level languages.

The fact that some typing is necessary to implement e�ciently oating-point numbers and records

is demonstrated in the design of many conventional imperative languages (such as C [9]), but is

scarcely ever stated explicitly. In the area of Lisp compiling, tagging is known to be a performance

bottleneck, and several attempts were made to avoid it, at least locally. A systematic approach

to this problem can be found in a recent paper by Peterson [14]. He considers mixing tagged and

untagged representations, in the setting of an untyped language, and focuses on �nding an optimal

mix of representations, one that minimizes total execution time. However, his analysis is expensive,

and does not consider higher-order functions. Relying on type information, as presented herein, is

certainly sub-optimal, but much more practical.

REFERENCES 23

References

[1] Andrew Appel. Run-time tags aren't necessary. Lisp and Symbolic Computation, 2(2):153{162,

June 1989.

[2] Andrew Appel. A runtime system. Technical report, Princeton University, 1989.

[3] Luca Cardelli. The Functional Abstract Machine. Polymorphism, 1(1), 1983.

[4] Luca Cardelli. Typeful programming. Technical Report 45, DEC Systems Research Center,

1989.

[5] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-

phism. Computing surveys, 17(4), 1985.

[6] Luis Damas and Robin Milner. Principal type-schemas for functional programs. In Proc.

Symp. Principles of Programming Languages, 1982.

[7] Jean-Yves Girard. Interpr�etation fonctionnelle et �elimination des coupures de l'arithm�etique

d'ordre sup�erieur. Th�ese d'Etat, Universit�e Paris VII, 1972.

[8] Adele Goldberg and David Robson. Smalltalk-80: the language and its implementation.

Addison-Wesley, 1983.

[9] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Addison-Wesley,

second edition 1988.

[10] P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, pages 308{

320, 1964.

[11] David C. J. Matthews. Poly manual. Technical Report 63, Computer Laboratory, University

of Cambridge, 1985.

[12] Robin Milner, Mads Tofte, and Robert Harper. The de�nition of Standard ML. The MIT

Press, 1990.

[13] Greg Nelson, Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, and Bill Kalsow.

Modula-3 report (revised). Technical Report 52, DEC Systems Research Center, 1989.

[14] John Peterson. Untagged data in tagged environments: choosing optimal representations at

compile-time. In Functional Programming Languages and Computer Architecture, 1989.

[15] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI

FN-19, Aarhus University, 1981.

[16] J. C. Reynolds. Toward a theory of type structure. In Colloquium on Programming, volume 19

of Lecture Notes in Computer Science. Springer-Verlag, 1974.

