
Proving a compiler
Mechanized verification of program transformations and static analyses

Xavier Leroy

INRIA Paris-Rocquencourt

Oregon Programming Languages summer school 2011

X. Leroy (INRIA) Proving a compiler Oregon 2011 1 / 265

Part I

Prologue: mechanized semantics, what for?
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Formal semantics of programming languages

Provide a mathematically-precise answer to the question

What does this program do, exactly?
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What does this program do, exactly?

#include <stdio.h>

int l;int main(int o,char **O,

int I){char c,*D=O[1];if(o>0){

for(l=0;D[l ];D[l

++]-=10){D [l++]-=120;D[l]-=

110;while (!main(0,O,l))D[l]

+= 20; putchar((D[l]+1032)

/20 ) ;}putchar(10);}else{

c=o+ (D[I]+82)%10-(I>l/2)*

(D[I-l+I]+72)/10-9;D[I]+=I<0?0

:!(o=main(c/10,O,I-1))*((c+999

)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)
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What about this one?

#define crBegin static int state=0; switch(state) { case 0:

#define crReturn(x) do { state=__LINE__; return x; \

case __LINE__:; } while (0)

#define crFinish }

int decompressor(void) {

static int c, len;

crBegin;

while (1) {

c = getchar();

if (c == EOF) break;

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--) crReturn(c);

} else crReturn(c);

}

crReturn(EOF);

crFinish;

}

(Simon Tatham,

author of PuTTY)

(It’s a co-routined version of a
decompressor for run-length
encoding.)
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Why indulge in formal semantics?

An intellectually challenging issue.

When English prose is not enough.
(e.g. language standardization documents.)

A prerequisite to formal program verification.
(Program proof, model checking, static analysis, etc.)

A prerequisite to building reliable “meta-programs”
(Programs that operate over programs: compilers, code generators,
program verifiers, type-checkers, . . . )
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Is this program transformation correct?

struct list { int head; struct list * tail; };

struct list * foo(struct list ** p)

{

return ((*p)->tail = NULL); (*p)->tail = NULL;

return (*p)->tail;

}

No, not if p == &(l.tail) and l.tail == &l (circular list).

l:
p

X. Leroy (INRIA) Proving a compiler Oregon 2011 7 / 265

What about this one?

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled for the Alpha processor with all optimizations and manually
decompiled back to C. . .
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double dotproduct(int n, double * a, double * b)

{

double dp, a0, a1, a2, a3, b0, b1, b2, b3;

double s0, s1, s2, s3, t0, t1, t2, t3;

int i, k;

dp = 0.0;

if (n <= 0) goto L5;

s0 = s1 = s2 = s3 = 0.0;

i = 0; k = n - 3;

if (k <= 0 || k > n) goto L19;

i = 4; if (k <= i) goto L14;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

i = 8; if (k <= i) goto L16;

L17: a2 = a[2]; b2 = b[2]; t0 = a0 * b0;

a3 = a[3]; b3 = b[3]; t1 = a1 * b1;

a0 = a[4]; b0 = b[4]; t2 = a2 * b2; t3 = a3 * b3;

a1 = a[5]; b1 = b[5];

s0 += t0; s1 += t1; s2 += t2; s3 += t3;

a += 4; i += 4; b += 4;

prefetch(a + 20); prefetch(b + 20);

if (i < k) goto L17;

L16: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

L18: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

dp = s0 + s1 + s2 + s3;

if (i >= n) goto L5;

L19: dp += a[0] * b[0];

i += 1; a += 1; b += 1;

if (i < n) goto L19;

L5: return dp;

L14: a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1]; goto L18;

}
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Proof assistants

Implementations of well-defined mathematical logics.

Provide a specification language to write definitions and state
theorems.

Provide ways to build proofs in interaction with the user.
(Not fully automated proving.)

Check the proofs for soundness and completeness.

Some mature proof assistants:

ACL2 HOL PVS

Agda Isabelle Twelf

Coq Mizar
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Using proof assistants to mechanize semantics

Formal semantics for realistic programming languages are large (but
shallow) formal systems.

Computers are better than humans at checking large but shallow proofs.

The proofs of the remaining 18 cases are similar and make
extensive use of the hypothesis that [. . . ]

The proof was mechanically checked by the XXX proof
assistant. This development is publically available for review at
http://...
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This lecture

Using the Coq proof assistant, formalize some representative program
transformations and static analyses, and prove their correctness.

In passing, introduce the semantic tools needed for this effort.
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Lecture material

http://gallium.inria.fr/~xleroy/courses/Eugene-2011/

The Coq development (source archive + HTML view).

These slides.
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Contents

1 Compiling IMP to a simple virtual machine; first compiler proofs.

2 Notions of semantic preservation.

3 A menagerie of semantics: small-step, big-step, coinductive big-step,
definitional interpreters, denotational semantics.

4 Finishing the proof of the IMP → VM compiler.

5 An example of optimizing program transformation and its correctness
proof: dead code elimination, with extension to register allocation.

6 A generic static analyzer (or: abstract interpretation for dummies).

7 Compiler verification “in the large”: the CompCert C compiler.
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Part II

Compiling IMP to virtual machine code
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Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results
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Reminder: the IMP language
(Already introduced in Benjamin Pierce’s “Software Foundations” course.)

A prototypical imperative language with structured control flow.

Arithmetic expressions:
a ::= n | x | a1 + a2 | a1 − a2 | a1 × a2

Boolean expressions:
b ::= true | false | a1 = a2 | a1 ≤ a2

| not b | b1 and b2

Commands (statements):
c ::= SKIP (do nothing)
| x ::= a (assignment)
| c1; c2 (sequence)
| IFB b THEN c1 ELSE c2 FI (conditional)
| WHILE b DO c END (loop)

X. Leroy (INRIA) Proving a compiler Oregon 2011 17 / 265

Reminder: IMP’s semantics

As defined in file Imp.v of “Software Foundations”:

Evaluation function for arithmetic expressions

aeval st a : nat

Evaluation function for boolean expressions

beval st b : bool

Evaluation predicate for commands (in big-step operational style)

c/st ⇒ st ′

(st ranges over variable states: ident→ nat.)
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Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).
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Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results
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The IMP virtual machine

Components of the machine:

The code C : a list of instructions.

The program counter pc: an integer, giving the position of the
currently-executing instruction in C .

The store st: a mapping from variable names to integer values.

The stack σ: a list of integer values
(used to store intermediate results temporarily).
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The instruction set

i ::= Iconst(n) push n on stack
| Ivar(x) push value of x
| Isetvar(x) pop value and assign it to x
| Iadd pop two values, push their sum
| Isub pop two values, push their difference
| Imul pop two values, push their product
| Ibranch forward(δ) unconditional jump forward
| Ibranch backward(δ) unconditional jump backward
| Ibeq(δ) pop two values, jump if =
| Ibne(δ) pop two values, jump if 6=
| Ible(δ) pop two values, jump if ≤
| Ibgt(δ) pop two values, jump if >
| Ihalt end of program

By default, each instruction increments pc by 1. Exception: branch instructions
increment it by 1 + δ (forward) or 1− δ (backward).

(δ is a branch offset relative to the next instruction.)
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Example

stack ε 12
1

12 13 ε

store x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 13

p.c . 0 1 2 3 4

code Ivar(x); Iconst(1); Iadd; Isetvar(x); Ibranch

backward(5)
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Semantics of the machine

Given by a transition relation (small-step), representing the execution of
one instruction.

Definition code := list instruction.

Definition stack := list nat.

Definition machine_state := (nat * stack * state)%type.

Inductive transition (C: code):

machine_state -> machine_state -> Prop :=

...

(See file Compil.v.)
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Executing machine programs

By iterating the transition relation:

Initial states: pc = 0, initial store, empty stack.

Final states: pc points to a halt instruction, empty stack.

Definition mach_terminates (C: code) (s_init s_fin: state) :=

exists pc,

code_at C pc = Some Ihalt /\

star (transition C) (0, nil, s_init) (pc, nil, s_fin).

Definition mach_diverges (C: code) (s_init: state) :=

infseq (transition C) (0, nil, s_init).

Definition mach_goes_wrong (C: code) (s_init: state) :=

(* otherwise *)

(star is reflexive transitive closure. See file Sequences.v.)
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Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results
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Compilation of arithmetic expressions

General contract: if a evaluates to n in store st,

code for a

pc

σ

st
Before:

pc ′ = pc + |code|
n :: σ

st
After:

Compilation is just translation to “reverse Polish notation”.

(See function compile_aexpr in Compil.v)
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Compilation of arithmetic expressions

Base case: if a = x ,

Ivar(x)

pc

σ

st

pc ′ = pc + 1
st(x) :: σ

st

Recursive decomposition: if a = a1 + a2,

code for a1 code for a2 Iadd

pc

σ

st

pc ′

n1 :: σ

st

pc ′′

n2 :: n1 :: σ

st

pc ′′′

(n1 + n2) :: σ

st
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Compilation of boolean expressions

compile bexp b cond δ:
skip δ instructions forward if b evaluates to boolean cond
continue in sequence if b evaluates to boolean ¬cond

code for b

pc

σ

st
Before

pc ′

σ

st

After (if result 6= cond)

pc ′ + δ
σ

st

After (if result = cond)
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Compilation of boolean expressions

A base case: b = (a1 = a2) and cond = true:

code for a1 code for a2 Ibeq(δ)

pc

σ

st

pc ′

n1 :: σ

st

pc ′′

n2 :: n1 :: σ

st

pc ′′′

σ

st

pc ′′′ + δ
σ

st
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Short-circuiting “and” expressions

If b1 evaluates to false, so does b1 and b2: no need to evaluate b2!

→ In this case, the code generated for b1 and b2 should skip over the
code for b2 and branch directly to the correct destination.
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Short-circuiting “and” expressions

If cond = false (branch if b1 and b2 is false):

code for b1 code for b2

skip |code(b2)|+ δ instrs if b1 false

skip δ instrs if b2 false

If cond = true (branch if b1 and b2 is true):

code for b1 code for b2

skip |code(b2)| instrs if b1 false

skip δ instrs if b2 true
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Compilation of commands

If the command c , started in initial state st, terminates in final state st ′,

code for c

pc

σ

st
Before:

pc ′ = pc + |code|
σ

st ′
After:

(See function compile_com in Compil.v)
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The mysterious offsets

Code for IFB b THEN c1 ELSE c2 FI:

code for b code for c1 Ibranch code for c2

skip |code(c1)|+ 1 instrs if b false

skip |code(c2)| instrs

X. Leroy (INRIA) Proving a compiler Oregon 2011 34 / 265

The mysterious offsets

Code for WHILE b DO c END:

code for b code for c Ibranch

skip |code(c)|+ 1 instrs if b false

go back |code(b)|+ |code(c)|+ 1 instrs
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Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results
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Compiler verification

We now have two ways to run a program:

Interpret it using e.g. the ceval_step function defined in Imp.v.

Compile it, then run the generated virtual machine code.

Will we get the same results either way?

The compiler verification problem

Verify that a compiler is semantics-preserving:
the generated code behaves as prescribed by the semantics of the source
program.
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First verifications

Let’s try to formalize and prove the intuitions we had when writing the
compilation functions.

Intuition for arithmetic expressions: if a evaluates to n in store st,

code for a

pc

σ

st
Before:

pc ′ = pc + |code|
n :: σ

st
After:

A formal claim along these lines:

Lemma compile_aexp_correct:

forall st a pc stk,

star (transition (compile_aexp a))

(0, stk, st)

(length (compile_aexp a), aeval st a :: stk, st).
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Verifying the compilation of expressions

For this statement to be provable by induction over the structure of the
expression a, we need to generalize it so that

the start PC is not necessarily 0;

the code compile_aexp a appears as a fragment of a larger code C .

To this end, we define the predicate codeseq_at C pc C’ capturing the
following situation:

C’C =

pc
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Verifying the compilation of expressions

Lemma compile_aexp_correct:

forall C st a pc stk,

codeseq_at C pc (compile_aexp a) ->

star (transition C)

(pc, stk, st)

(pc + length (compile_aexp a), aeval st a :: stk, st).

Proof: a simple induction on the structure of a.

The base cases are trivial:

a = n: a single Iconst transition.

a = x : a single Ivar(x) transition.
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An inductive case
Consider a = a1 + a2 and assume

codeseq at C pc (code(a1) + +code(a2) + +Iadd :: nil)

We have the following sequence of transitions:

(pc, σ, st)

↓ ∗ ind. hyp. on a1

(pc + |code(a1)|, aeval st a1 :: σ, st)

↓ ∗ ind. hyp. on a2

(pc + |code(a1)|+ |code(a2)|, aeval st a2 :: aeval st a1 :: σ, st)

↓ Iadd transition

(pc + |code(a1)|+ |code(a2)|+ 1, (aeval st a1 + aeval st a2) :: σ, st)
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Historical note

As simple as this proof looks, it is of historical importance:

First published proof of compiler correctness.
(McCarthy and Painter, 1967).

First mechanized proof of compiler correctness.
(Milner and Weyrauch, 1972, using Stanford LCF).
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Mathematical Aspects of Computer Science, 1967
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Machine Intelligence (7), 1972.
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(Even the proof scripts look familiar!)
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Verifying the compilation of expressions

Similar approach for boolean expressions:

Lemma compile_bexp_correct:

forall C st b cond ofs pc stk,

codeseq_at C pc (compile_bexp b cond ofs) ->

star (transition C)

(pc, stk, st)

(pc + length (compile_bexp b cond ofs)

+ if eqb (beval st b) cond then ofs else 0,

stk, st).

Proof: induction on the structure of b, plus copious case analysis.
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Verifying the compilation of commands

Lemma compile_com_correct_terminating:

forall C st c st’,

c / st ==> st’ ->

forall stk pc,

codeseq_at C pc (compile_com c) ->

star (transition C)

(pc, stk, st)

(pc + length (compile_com c), stk, st’).

An induction on the structure of c fails because of the WHILE case. An
induction on the derivation of c / st ==> st’ works perfectly.
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Summary so far

Piecing the lemmas together, and defining

compile program c = compile command c + + Ihalt :: nil

we obtain a rather nice theorem:

Theorem compile_program_correct_terminating:

forall c st st’,

c / st ==> st’ ->

mach_terminates (compile_program c) st st’.

But is this enough to conclude that our compiler is correct?
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What could have we missed?

Theorem compile_program_correct_terminating:

forall c st st’,

c / st ==> st’ ->

mach_terminates (compile_program c) st st’.

What if the generated VM code could terminate on a state other than
st’? or loop? or go wrong?

What if the program c started in st diverges instead of terminating?
What does the generated code do in this case?

Needed: more precise notions of semantic preservation + richer semantics
(esp. for non-termination).
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Part III

Notions of semantic preservation
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Comparing the behaviors of two programs

Consider two programs P1 and P2, possibly in different languages.

(For example, P1 is an IMP command and P2 is virtual machine code
generated by compiling P1.)

The semantics of the two languages associate to P1,P2

sets B(P1),B(P2) of observable behaviors.

card(B(P)) = 1 if P is deterministic, and card(B(P)) > 1 if it is not.
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Observable behaviors

For an IMP-like language:

observable behavior ::= terminates(st) | diverges | goeswrong

(Alternative: in the terminates case, observe not the full final state st
but only the values of specific variables.)

For a functional language like STLC:

observable behavior ::= terminates(v) | diverges | goeswrong

where v is the value of the program.
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Observable behaviors

For an imperative language with I/O: add a trace of input-output
operations performed during execution.

x := 1; x := 2; ≈ x := 2;

(trace: ε) (trace: ε)

print(1); print(2); 6≈ print(2);

(trace: out(1).out(2)) (trace: out(2))
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Bisimulation (observational equivalence)

B(P1) = B(P2)

The source and transformed programs are completely undistinguishable.

Often too strong in practice . . .
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Reducing non-determinism during compilation

Languages such as C leave evaluation order partially unspecified.

int x = 0;

int f(void) { x = x + 1; return x; }

int g(void) { x = x - 1; return x; }

The expression f() + g() can evaluate either

to 1 if f() is evaluated first (returning 1), then g() (returning 0);

to −1 if g() is evaluated first (returning −1), then f() (returning 0).

Every C compiler chooses one evaluation order at compile-time.

The compiled code therefore has fewer behaviors than the source program
(1 instead of 2).
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Reducing non-determinism during optimization

In a concurrent setting, classic optimizations often reduce
non-determinism:

Original program:

a := x + 1; b := x + 1; run in parallel with x := 1;

Program after common subexpression elimination:

a := x + 1; b := a; run in parallel with x := 1;

Assuming x = 0 initially, the final states for the original program are

(a, b) ∈ {(1, 1); (1, 2); (2, 2)}

Those for the optimized program are

(a, b) ∈ {(1, 1); (2, 2)}
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Backward simulation (refinement)

B(P1) ⊇ B(P2)

All possible behaviors of P2 are legal behaviors of P1, but P2 can have
fewer behaviors (e.g. because some behaviors were eliminated during
compilation).

X. Leroy (INRIA) Proving a compiler Oregon 2011 57 / 265

Should “going wrong” behaviors be preserved?

Compilers routinely “optimize away” going-wrong behaviors. For example:

x := 1 / y; x := 42

(goes wrong if y = 0)
optimized to x := 42

(always terminates normally)

Justifications:

We know that the program being compiled does not go wrong
I because it was type-checked with a sound type system
I or because it was formally verified.

Or just “garbage in, garbage out”.
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Safe backward simulation

Restrict ourselves to source programs that cannot go wrong:

goeswrong /∈ B(P1) =⇒ B(P1) ⊇ B(P2)

Let Spec be the functional specification of a program:
a set of correct behaviors, not containing goeswrong.

A program P satisfies Spec iff B(P) ⊆ Spec.

Lemma

If “safe backward simulation” holds,
and P1 satisfies Spec, then P2 satisfies Spec.
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The pains of backward simulations

“Safe backward simulation” looks like “the” semantic preservation
property we expect from a correct compiler.

It is however rather difficult to prove:

We need to consider all steps that the compiled code can take, and
trace them back to steps the source program can take.

This is problematic if one source-level step is broken into several
machine-level steps.
(E.g. x ::= a is one step in IMP, but several instructions in the VM.)
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General shape of a backward simulation proof

1+2 3

Iconst(1) Iconst(2) Iadd

nil 1 :: nil 2 :: 1 :: nil 3 :: nil

Source code:

VM code:

VM stack:

one step

compilation decompilation decompilation

Intermediate VM code sequences like Iconst(2); Iadd or just Iadd do
not correspond to the compilation of any source expression.

One solution: invent a decompilation function that is left-inverse of
compilation. (Hard in general!)
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Forward simulations

Forward simulation property:

B(P1) ⊆ B(P2)

Safe forward simulation property:

goeswrong /∈ B(P1) =⇒ B(P1) ⊆ B(P2)

Significantly easier to prove than backward simulations, but not
informative enough, apparently:

The compiled code P2 has all the good behaviors of P1, but could have
additional bad behaviors . . .
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Determinism to the rescue!

Lemma

If P2 is deterministic (i.e. B(P2) is a singleton), then

“forward simulation” implies “backward simulation”

“forward simulation for correct programs” implies “backward
simulation for correct programs”

Trivial result: follows from ∅ ⊂ X ⊆ {y} =⇒ X = {y}.
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Relating preservation properties

Bisimulation

Backward
simulation

Safe backward
simulation

Preservation of
specifications

Forward
simulation

Safe forward
simulation

if P2 deterministic

if P1 deterministic

if P2 deterministic

if P1 deterministic
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Our plan for verifying a compiler

1 Prove “forward simulation for correct programs” between source and
compiled codes.

2 Prove that the target language (machine code) is deterministic.

3 Conclude that all functional specifications are preserved by
compilation.

Note: (1) + (2) imply that the source langage has deterministic
semantics. If this isn’t naturally the case (e.g. for C), start by
determinizing its semantics (e.g. fix an evaluation order a priori).
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Handling multiple compilation passes

Source (non-det)

Source (determinized)

Intermediate language 1

Intermediate language 2

Machine code
: forward simulation proof
: backward simulation proof

(same code)

pass 1

pass 2

pass 3
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Back to the IMP → VM compiler

We have already proved half of a safe forward simulation result:

Theorem compile_program_correct_terminating:

forall c st st’,

c / st ==> st’ ->

mach_terminates (compile_program c) st st’.

It remains to show the other half:

If command c diverges when started in state st,
then the virtual machine, executing code compile_program c

from initial state st, makes infinitely many transitions.

What we need: a formal characterization of divergence for IMP commands.
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Part IV

More on mechanized semantics
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More on mechanized semantics
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Big-step semantics

A predicate c/s ⇒ s ′, meaning “started in state s, command c terminates
and the final state is s ′”.

SKIP/s ⇒ s x := a/s ⇒ s[x ← aeval s a]

c1/s ⇒ s1 c2/s1 ⇒ s2

c1; c2/s ⇒ s2

c1/s ⇒ s ′ if beval s b = true

c2/s ⇒ s ′ if beval s b = false

IFB b THEN c1 ELSE c2 FI/s ⇒ s ′

beval s b = false

WHILE b DO c END/s ⇒ s

beval s b = true c/s ⇒ s1 WHILE b DO c END/s1 ⇒ s2

WHILE b DO c END/s ⇒ s2
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Pros and cons of big-step semantics

Pros:

Follows naturally the structure of programs.
(Gilles Kahn called it “natural semantics”).

Close connection with interpreters.

Powerful induction principle (on the structure of derivations).

Easy to extend with various structured constructs
(functions and procedures, other forms of loops)

Cons:

Fails to characterize diverging executions.
(More precisely: no distinction between divergence and going wrong.)

Concurrency, unstructured control (goto) nearly impossible to handle.
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Big-step semantics and divergence

For IMP, a negative characterization of divergence:

c/s diverges ⇐⇒ ¬(∃s ′, c/s ⇒ s ′)

In general (e.g. STLC), executions can also go wrong (in addition to
terminating or diverging). Big-step semantics fails to distinguish between
divergence and going wrong:

c/s diverges ∨ c/s goes wrong ⇐⇒ ¬(∃s ′, c/s ⇒ s ′)

Highly desirable: a positive characterization of divergence, distinguishing it
from “going wrong”.
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Small-step semantics

Also called “structured operational semantics”.

Like β-reduction in the λ-calculus: view computations as sequences of
reductions

M
β→ M1

β→ M2
β→ . . .

Each reduction M → M ′ represents an elementary computation.
M ′ represents the residual computations that remain to be done later.
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Small-step semantics for IMP

Reduction relation: c/s → c ′/s ′.

x := a/s → SKIP/s[x ← aeval s a]

c1/s → c ′1/s ′

(c1; c2)/s → (c ′1; c2)/s ′
(SKIP; c)/s → c/s

beval s b = true

IFB b THEN c1 ELSE c2 FI/s → c1/s

beval s b = false

IFB b THEN c1 ELSE c2 FI/s → c2/s

WHILE b DO c END/s → IFB b THEN c; WHILE b DO c END ELSE SKIP/s
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Sequences of reductions

The behavior of a command c in an initial state s is obtained by forming
sequences of reductions starting at c/s:

Termination with final state s ′: finite sequence of reductions to SKIP.

c/s → · · · → SKIP/s ′

Divergence: infinite sequence of reductions.

c/s → c1/s1 → · · · → cn/sn → · · ·

Going wrong: finite sequence of reductions to an irreducible command
that is not SKIP.

(c, s)→ · · · → (c ′, s ′) 6→ with c 6= SKIP
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Equivalence small-step / big-step

A classic result:

c/s ⇒ s ′ ⇐⇒ c/s
∗→ SKIP/s ′

(See Coq file Semantics.v.)
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Pros and cons of small-step semantics

Pros:

Clean, unquestionable characterization of program behaviors
(termination, divergence, going wrong).

Extends even to unstructured constructs
(goto, concurrency).

De facto standard in the type systems community and in the
concurrency community.

Cons:

Does not follow the structure of programs; lack of a powerful
induction principle.

This is not the way interpreters are written!

Some extensions require unnatural extensions of the syntax of terms
(e.g. with call contexts in the case of IMP + procedures).
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Towards a big-step presentation of divergence

Big-step semantics can be viewed as adding structure to terminating
sequences of reductions. Consider such a sequence for c ; c ′:

(c ; c ′)/s → (c1; c ′)/s1 → · · · → (SKIP; c ′)/s2 → c ′/s2 → · · · → SKIP/s3

It contains a terminating reduction sequence for c :

(c, s)→ (c1, s1)→ · · · → (SKIP, s2)

followed by another for c ′.

The big-step semantics reflects this structure in its rule for sequences:

c1/s ⇒ s1 c2/s1 ⇒ s2

c1; c2/s ⇒ s2
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Towards a big-step presentation of divergence

Let’s play the same game for infinite sequences of reductions!

Consider an infinite reduction sequence for c ; c ′. It must be of one of the
following two forms:

(c ; c ′)/s
∗→ (ci ; c ′)/si → · · ·

(c ; c ′)/s
∗→ (SKIP; c ′)/si → c ′/si

∗→ c ′j/sj → · · ·
I.e. either c diverges, or it terminates normally and c ′ diverges.

Idea: write inference rules that follow this structure and define a predicate
c/s ⇒∞, meaning “in initial state s, the command c diverges”.
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Big-step rules for divergence

c1/s ⇒∞

c1; c2/s ⇒∞

c1/s ⇒ s1 c2/s1 ⇒∞

c1; c2/s ⇒∞
c1/s ⇒∞ if beval s b = true

c2/s ⇒∞ if beval s b = false

IFB b THEN c1 ELSE c2 FI/s ⇒∞

beval s b = true c/s ⇒∞

WHILE b DO c END/s ⇒∞

beval s b = true c/s ⇒ s1 WHILE b DO c END/s1 ⇒∞

WHILE b DO c END/s ⇒∞

Problem: there are no axioms! So, isn’t it the case that these rules define
a predicate c/s ⇒∞ that is always false?
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Induction vs. coinduction in a nutshell

A set of axioms and inference rules can be interpreted in two ways:

Inductive interpretation:

In set theory: the least defined predicate that satisfies the axioms and
rules (smallest fixpoint).

In proof theory: conclusions of finite derivation trees.

Coinductive interpretation:

In set theory: the most defined predicate that satisfies the axioms and
rules (biggest fixpoint).

In proof theory: conclusions of finite or infinite derivation trees.

(See Coq illustration in file Coinduction.v, and section 2 of Coinductive

big-step semantics by H. Grall and X. Leroy.)
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Example of divergence

Let’s interpret coinductively the inference rules defining c/s ⇒∞.
(In Coq: use CoInductive instead of Inductive.)

We can easily show that classic examples of divergence are captured.
Consider c = WHILE true DO SKIP END. We can build the following
infinite derivation of c/s ⇒∞:

beval s true = true

SKIP/s ⇒ s

beval s true = true

SKIP/s ⇒ s

beval s true = true

SKIP/s ⇒ s

beval s true = true
SKIP/s ⇒ s

.

.

.

.

.

.

c/s ⇒ ∞

c/s ⇒ ∞

c/s ⇒ ∞

c/s ⇒∞
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Big-step divergence vs. small-step divergence

Does the c/s ⇒∞ coinductive predicate capture the same notion of
divergence as the existence of infinite reduction sequences?
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From big-step divergence to small-step divergence

Lemma

If c/s ⇒∞, there exists c ′ and s ′ such that c/s → c ′/s ′ and c ′/s ′ ⇒∞.

{(c , s) | c/s ⇒∞}
• •

•

Theorem

If c/s ⇒∞, then there exists an infinite sequence of reductions from c/s.
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From small-step divergence to big-step divergence

Theorem

If c/s reduces infinitely, then c/s ⇒∞.

The proof uses inversion lemmas such as:

If c1; c2 reduces infinitely, then
either c1 reduces infinitely,
or c1 reduces finitely to SKIP and c2 reduces infinitely.

Note that these lemmas cannot be proved in Coq’s constructive logic and
require the excluded middle axiom (∀P, P ∨ ¬P) from classical logic.
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Constructive logic in a nutshell

In Coq’s constructive logic, a proof is a terminating functional program:

A proof of . . . is . . .

A→ B ≈ a total function from proofs of A to proofs of B.

A ∧ B ≈ a pair of proofs, one for A and another for B.

A ∨ B ≈ a procedure that decides which of A and B holds
and returns either a proof of A or a proof of B.

∀x : A. B(x) ≈ a total function from values v : A to proofs of
B(v).

∃x : A. B(x) ≈ a pair of a value v : A and a proof of B(v).
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Reasoning by cases about termination

A proposition such as

For all c and s,
either c/s reduces infinitely,

or there exists c ′, s ′ such that c/s
∗→ c ′/s ′ 6→

cannot be proved constructively.

A proof would be a total function that decides whether c/s terminates or
diverges, solving the halting problem.

The obvious proof uses the principle of excluded middle (∀P, P ∨ ¬P),
which is not constructive.

Excluded middle or the axiom of choice can however be added to Coq as
axioms without breaking logical consistency.
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Definitional interpreter for IMP

File Imp.v in “Software Foundations” defines a Coq function

ceval_step: state -> com -> nat -> option state

that executes (by interpretation) a given command in a given state.

The nat argument bounds the recursion depth and ensures that
ceval_step always terminates.

ceval_step c st n = Some st’ denotes termination with final
state st’.

ceval_step c st n = None means that the interpretation “runs
out of fuel”.
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Definitional interpreter for IMP
Fixpoint ceval_step (st : state) (c : com) (i : nat)

: option state :=

match i with

| O => None

| S i’ =>

match c with

| SKIP =>

Some st

| l ::= a1 =>

Some (update st l (aeval st a1))

| c1 ; c2 =>

bind_option

(ceval_step st c1 i’)

(fun st’ => ceval_step st’ c2 i’)

| IFB b THEN c1 ELSE c2 FI =>

if (beval st b) then ceval_step st c1 i’ else ceval_step st c2 i’

| WHILE b1 DO c1 END =>

if (beval st b1)

then bind_option

(ceval_step st c1 i’)

(fun st’ => ceval_step st’ c i’)

else Some st

end

end.
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Equivalence with big-step semantics

Theorem ceval_step__ceval:

forall c st st’,

(exists i, ceval_step st c i = Some st’) ->

c / st ==> st’.

Theorem ceval__ceval_step:

forall c st st’,

c / st ==> st’ ->

exists i, ceval_step st c i = Some st’.

Theorem cevalinf_ceval_step_bottom:

forall n c st,

c / st ==> ∞ -> ceval_step st c n = None.

Theorem ceval_step_bottom_cevalinf:

forall c st m,

(forall n, m <= n -> ceval_step st c n = None) ->

c / st ==> ∞
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From definitional interpreter to denotational semantics

A simple form of denotational semantics can be obtained by “letting n go
to infinity” in the definitional interpreter.

For a terminating command:

nNone

Some(s ′)

ceval step s c n

For a diverging command:

nNone

ceval step s c n
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A denotational semantics

Lemma

For every c, there exists a function [[c]] from states to optional states such
that ∀s, ∃m, ∀n ≥ m, ceval step c s n = [[c]] s.

The proof uses excluded middle and an axiom of description, but no
domain theory.

[[c]] s = Some(s ′) denotes termination with final state s ′.
[[c]] s = None denotes divergence. (None represents ⊥.)
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The equations of denotational semantics

The denotation function [[·]] satisfies the equations of denotational
semantics:

[[SKIP]] s = Some(s)

[[x := e]] s = Some(s[x ← [[e]] s])

[[c1; c2]] s = [[c1]] s B (λs ′. [[c2]] s ′)

[[IFB b THEN c1 ELSE c2 FI]] s = [[c1]] s if beval s b = true

[[IFB b THEN c1 ELSE c2 FI]] s = [[c2]] s if beval s b = false

[[WHILE b DO c END]] s = Some(s) if beval s b = false

[[WHILE b DO c END]] s = [[c]] s B (λs ′. [[WHILE b DO c END]] s ′)

if beval s b = true

Moreover, [[WHILE b DO c END]] is the smallest function from states to
results that satisfies the last two equations.
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Relating denotational and big-step semantics

Lemma denot_ceval:

forall c st st’,

c / st ==> st’ <-> denot st c = Some st’.

Lemma denot_cevalinf:

forall c st,

c / st ==> ∞ <-> denot st c = None.
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In summary. . .

A toolbox of 4 mechanized semantics, all proved equivalent:

small-step

semantics

big-step

semantics
definitional
interpreter

denotational
semantics

Each semantics has its strengths:

Big-step: structured; powerful (co-) induction principles.

Small-step: unified treatment of termination & divergence; all-terrain.

Definitional interpreter: executable.

Denotational: equational reasoning.
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Part V

Compiling IMP to virtual machine code, continued
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Finishing the proof of forward simulation

One half already proved: the terminating case.

Theorem compile_program_correct_terminating:

forall c st st’,

c / st ==> st’ ->

mach_terminates (compile_program c) st st’.

One half to go: the diverging case.
(If c/st diverges, then mach_diverges (compile_program c) st.)
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Compiling IMP to virtual machine code, continued

10 A proof using coinductive big-step semantics

11 A proof using small-step semantics
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Using coinductive big-step semantics

The desired result:

Lemma compile_com_correct_diverging:

forall c st C pc stk,

c / st ==> ∞ -> codeseq_at C pc (compile_com c) ->

infseq (transition C) (pc, stk, st).

where the infseq operator is defined in Sequences.v as a coinductive
predicate:

CoInductive infseq (A: Type) (R: A -> A -> Prop): A -> Prop :=

| infseq_step: forall a b,

R a b -> infseq R b -> infseq Ra.
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The basic coinduction principle

Let X be a set of machine states.
(Encoded in Coq as a predicate machstate→ Prop.)

Assume that ∀x ∈ X , ∃y ∈ X , x → y .

X
• •

•

Then, for any x ∈ X , there exists an infinite sequence of machine
transitions starting at x .
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A more flexible coinduction principle

Let X be a set of machine states.
(Encoded in Coq as a predicate machstate→ Prop.)

Assume that ∀x ∈ X , ∃y ∈ X , x
+→ y .

X
•

• •

•

•

•

Then, for any x ∈ X , there exists an infinite sequence of machine
transitions starting at x .
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Using the coinduction principle

Let C be the compiled code for the whole program and take

X = {(pc, stk , s) | ∃c , c/s ⇒∞∧ codeseq at C pc c}
We show that X is “plus-productive”, i.e.

∀x ∈ X , ∃y ∈ X , plus (transition C) x y

The proof is by structural induction on the command c .
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Base case: while loops

beval s b = true c/s ⇒ s1 WHILE b DO c END/s1 ⇒∞

WHILE b DO c END/s ⇒∞
Assume pc points to the code for WHILE b DO c END.

code for b code for c Ibranch

∗ ∗

1

state st state st state st ′

state st ′

+
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Inductive cases

Just prepend a
∗→ sequence to the

+→ sequence obtained by induction
hypothesis.

(See Coq proof.)

X. Leroy (INRIA) Proving a compiler Oregon 2011 108 / 265



Wrap-up

The “plus” coinduction principle now shows

Lemma compile_com_correct_diverging:

forall c st C pc stk,

c / st ==> ∞ -> codeseq_at C pc (compile_com c) ->

infseq (transition C) (pc, stk, st).

from which the second half of forward simulation follows:

Theorem compile_program_correct_diverging:

forall c st,

c / st ==> ∞ ->

mach_diverges (compile_program c) st.

Small regret: some duplication of proof effort between the terminating and
diverging cases.
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Compiling IMP to virtual machine code, continued

10 A proof using coinductive big-step semantics

11 A proof using small-step semantics
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Forward simulations, small-step style

Show that every transition in the execution of the source program

is simulated by some transitions in the compiled program

while preserving a relation between the states of the two programs.
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Lock-step simulation

Every transition of the source is simulated by exactly one transition in the
compiled code.

c1/s1 C , (pc1, σ1, s
′
1)

c2/s2 C , (pc2, σ2, s
′
2)

≈

≈
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Lock-step simulation

Further show that initial states are related:

c/s ≈ (C , (0, nil , s)) with C = compile program(c)

Further show that final states are quasi-related:

SKIP/s ≈ (C ,mst) =⇒ (C ,mst)
∗→ (C , (pc, nil , s)) ∧ C (pc) = Ihalt

X. Leroy (INRIA) Proving a compiler Oregon 2011 113 / 265

Lock-step simulation

Forward simulation follows easily:

c1/s1 C , (pc1, σ1, s
′
1)

c2/s2 C , (pc2, σ2, s
′
2)

SKIP/sn C , (pcn, σn, s
′
n)

halt with store = sn

≈

≈

≈

≈

∗

(Likewise if c1/s1 reduces infinitely.)
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“Plus” simulation diagrams

In some cases, each transition in the source program is simulated by one or
several transitions in the compiled code.

(Example: compiled code for x ::= a consists of several instructions.)

c1/s1 C , (pc1, σ1, s
′
1)

c2/s2 C , (pc2, σ2, s
′
2)

≈

≈
+

Forward simulation still holds.
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“Star” simulation diagrams (incorrect)

In other cases, each transition in the source program is simulated by zero,
one or several transitions in the compiled code.

(Example: source reduction (SKIP; c)/s → c/s makes zero transitions in
the machine code.)

c1/s1 C , (pc1, σ1, s
′
1)

c2/s2 C , (pc2, σ2, s
′
2)

≈

≈
∗

Forward simulation is not guaranteed:
terminating executions are preserved;
but diverging executions may not be preserved.
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The “infinite stuttering” problem

c1/s1 C , (pc, σ, s ′)

c2/s2

cn/sn

cn+1/sn+1

≈
≈
≈
≈

The source program diverges but the compiled code can terminate,
normally or by going wrong.
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An incorrect optimization that exhibits infinite stuttering

Add special cases to compile_com so that the following three trivially
infinite loops get compiled to no instructions at all:

compile_com (WHILE true DO SKIP END) = nil

compile_com (IFB true THEN SKIP; WHILE true DO SKIP END

ELSE SKIP) = nil

compile_com (SKIP; WHILE true DO SKIP END) = nil
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Infinite stuttering

Adding special cases to the ≈ relation, we can prove the following naive
“star” simulation diagram:

WHILE true DO SKIP END/s C , (pc, σ, s ′)

IFB true THEN SKIP; . . . ELSE SKIP/s

SKIP; . . . / s

WHILE true DO SKIP END/s

≈
≈
≈
≈

Conclusion: a naive “star” simulation diagram does not prove that a
compiler is correct.
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“Star” simulation diagrams (corrected)

Find a measure M(c) : nat over source terms that decreases strictly when
a stuttering step is taken. Then show:

c1/s1 C , (pc1, σ1, s
′
1)

c2/s2 C , (pc2, σ2, s
′
2)

≈

≈
+

c1/s1 C , (pc1, σ1, s
′
1)

c2/s2

≈

≈OR

and M(c2) < M(c1)

Forward simulation, terminating case: OK (as before).

Forward simulation, diverging case: OK.
(If c/s diverges, it must perform infinitely many non-stuttering steps, so the

machine executes infinitely many transitions.)
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Application to the IMP → VM compiler

Let’s try to prove a “star” simulation diagram for our compiler.

Two difficulties:

1 Rule out infinite stuttering.

2 Match the current command c (which changes during reductions)
with the compiled code C (which is fixed throughout execution).
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Stuttering woes

Stuttering reduction = no machine instruction executed. These include:

(SKIP; c)/s → c/s

(c1; c)/s → (c2; c)/s if c1/s → c2/s stutters

(IFB true THEN c1 ELSE c2)/s → c1/s

(IFB false THEN c1 ELSE c2)/s → c2/s

WHILE b DO c END/s → IFB b

THEN c; WHILE b DO c END

ELSE SKIP
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Stuttering woes

Therefore, the measure M must satisfy (at least):

M(SKIP; c) > M(c)

M(c1; c) > M(c2; c) if M(c1) > M(c2)

M(IFB true THEN c1 ELSE c2) > M(c1)

M(WHILE b DO c END) > M(IFB b

THEN c; WHILE b DO c END

ELSE SKIP)

This is impossible:

M(WHILE true DO SKIP END) > M(IFB true THEN . . . FI)

> M(SKIP; WHILE true DO SKIP END)

> M(WHILE true DO SKIP END)
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Stuttering woes

Only solution known to the teacher: change the compilation scheme for
WHILE loops so that the machine always takes one transition at the
beginning of each loop iteration.

compile com(WHILE b DO c END) = Ibranch backward(0); . . .

This way, the WHILE reduction is no longer stuttering: it is simulated by
the execution of the dummy Ibranch backward(0) instruction.
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Relating commands with compiled code

In the big-step proof: codeseq_at C pc (compile_com c).

compile com cC =

pc

In a small-step proof: no longer works because reductions create
commands that did not occur in the original program.
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Spontaneous generation of commands

(IFB b THEN c1 ELSE c2 FI; c)/s → (c1; c)/s

Compiled code for initial command:

code for b code for c1 Ibranch code for c2 code for c

This code nowhere contains the compiled code for c1; c , which is:

code for c1 code for c

(Similar problem for
WHILE b DO c END/s → IFB b THEN c; WHILE b DO c END ELSE SKIP/s.)
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Relating commands with compiled code

Solution: define a (nondeterministic) relation

spec compile com C c pc1 pc2

that says, roughly:

There exists a path from pc1 to pc2 in compiled code C that
spells out machine instructions that execute command c.

This relation tolerates the insertion of unconditional branches in the
middle of the path.
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Relating commands with compiled code

According to this relation, the code below “contains” the instructions for
c1; c between pc1 and pc2.

code for b code for c1 Ibranch code for c2 code for c

pc1 pc2
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Relating commands with compiled code

Likewise, the code below “contains” the instructions for
c ; WHILE b DO c END between pc1 and pc2.

code for b code for c Ibranch

pc1 pc2
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Wrap up

We can finally prove a “star” simulation diagram:

forall C c1 s1 c2 s2 pc1 pc3,

c1 / s1 --> c2 / s2 ->

spec_compile_com C c1 pc1 pc3 ->

exists pc2,

(plus (transition C) (pc1, nil, s1) (pc2, nil, s2)

\/ com_size c1 < com_size c2

/\ star (transition C) (pc1, nil, s1) (pc2, nil s2))

/\ spec_compile_com C c2 pc2 pc3.

where the measure com_size is simply the number of constructors in a
command.

From this diagram, forward simulation follows easily.
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Conclusions

Compiler proofs based on big-step semantics:

+ Statements of lemmas are easy to find.

+ The structure of the proof follows the structure of the compiled code.

– Separate proofs for termination & divergence

Compiler proofs based on small-step semantics:

+ Termination & divergence handled at the same time.

+ Proof is minimal in terms of number of cases.

– Need to invent invariant between states & measure.

– Sometimes the compilation scheme needs tweaking for the proof to
go through.

X. Leroy (INRIA) Proving a compiler Oregon 2011 131 / 265

Part VI

Optimizations based on liveness analysis
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Compiler optimizations

Automatically transform the programmer-supplied code into equivalent
code that

Runs faster
I Removes redundant or useless computations.
I Use cheaper computations (e.g. x * 5 → (x << 2) + x)
I Exhibits more parallelism (instruction-level, thread-level).

Is smaller
(For cheap embedded systems.)

Consumes less energy
(For battery-powered systems.)

Is more resistant to attacks
(For smart cards and other secure systems.)

Dozens of compiler optimizations are known, each targeting a particular
class of inefficiencies.
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Compiler optimization and static analysis

Some optimizations are unconditionally valid, e.g.:

x ∗ 2 → x + x

x ∗ 4 → x << 2

Most others apply only if some conditions are met:

x / 4 → x >> 2 only if x ≥ 0
x + 1 → 1 only if x = 0

if x < y then c1 else c2 → c1 only if x < y

x := y + 1 → skip only if x unused later

→ need a static analysis prior to the actual code transformation.
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Static analysis

Determine some properties of all concrete executions of a program.

Often, these are properties of the values of variables at a given program
point:

x = n x ∈ [n,m] x = expr a.x + b.y ≤ n

Requirements:

The inputs to the program are unknown.

The analysis must terminate.

The analysis must run in reasonable time and space.
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Running example:
dead code elimination via liveness analysis

Remove assignments x := e, turning them into skip, whenever the
variable x is never used later in the program execution.

Example

Consider: x := 1; y := y + 1; x := 2

The assignment x := 1 can always be eliminated since x is not used
before being redefined by x := 2.

Builds on a static analysis called liveness analysis.

X. Leroy (INRIA) Proving a compiler Oregon 2011 136 / 265

Optimizations based on liveness analysis

12 Liveness analysis

13 Dead code elimination

14 Advanced topic: computing exact fixpoints

15 Advanced topic: register allocation
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Notions of liveness

A variable is dead at a program point if its value is not used later in any
execution of the program:

either the variable is not mentioned again before going out of scope

or it is always redefined before further use.

A variable is live if it is not dead.

Easy to compute for straight-line programs (sequences of assignments):

(def x)
x := . . .

(use x)
. . . x . . .

(def x)
x := . . .

(use x)
. . . x . . .

(use x)
. . . x . . .

x dead

x live
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Notions of liveness

Liveness information is more delicate to compute in the presence of
conditionals and loops:

def x

if

use x def x

use x

Conservatively over-approximate liveness, assuming all if conditionals can
be true or false, and all while loops are taken 0 or several times.
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Liveness equations

Given a set L of variables live “after” a command c , write live(c , L) for
the set of variables live “before” the command.

live(SKIP, L) = L

live(x := a, L) =

{
(L \ {x}) ∪ FV (a) if x ∈ L;

L if x /∈ L.

live((c1; c2), L) = live(c1, live(c2, L))

live((IFB b THEN c1 ELSE c2), L) = FV (b) ∪ live(c1, L) ∪ live(c2, L)

live((WHILE b DO c END), L) = X such that

X ⊇ L ∪ FV (b) ∪ live(c ,X )
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Liveness for loops

test b

c

test b

c

... exit point

entry point

X

live(c ,X )

L

X

live(c ,X )

L

X

We must have:

FV (b) ⊆ X
(evaluation of b)

L ⊆ X
(if b is false)

live(c ,X ) ⊆ X
(if b is true and c is
executed)
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Fixpoints, a.k.a “the recurring problem”

Consider F = λX . L ∪ FV (b) ∪ live(c ,X ).

To analyze while loops, we need to compute a post-fixpoint of F , i.e. an
X such that F (X ) ⊆ X .

For maximal precision, X would preferably be the smallest fixpoint
F (X ) = X ; but for soundness, any post-fixpoint suffices.
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The mathematician’s approach to fixpoints

Let A,≤ be a partially ordered type. Consider F : A→ A.

Theorem (Knaster-Tarski)

The sequence
⊥, F (⊥), F (F (⊥)), . . . , F n(⊥), . . .

converges to the smallest fixpoint of F , provided that

F is increasing: x ≤ y ⇒ F (x) ≤ F (y).

⊥ is a smallest element.

All strictly ascending chains x0 < x1 < . . . < xn are finite.

This provides an effective way to compute fixpoints.
(See Coq file Fixpoint.v).
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Problems with Knaster-Tarski

1 Formalizing and exploiting the ascending chain property
→ well-founded orderings and Noetherian induction.

2 In our case (liveness analysis), the ordering ⊂ has infinite ascending
chains: ∅ ⊂ {x1} ⊂ {x1, x2} ⊂ · · ·
Need to restrict ourselves to subsets of a given, finite universe of
variables (= all variables free in the program).
→ dependent types.

We will revisit this approach later. For now, time for plan B. . .
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The engineer’s approach to post-fixpoints

F = λX . L ∪ FV (b) ∪ live(c ,X )

Compute F (∅),F (F (∅)), . . . ,FN(∅) up to some fixed N.

Stop as soon as a post-fixpoint is found (F i+1(∅) ⊆ F i (∅)).

Otherwise, return a safe over-approximation
(in our case, a ∪ FV (while b do c done)).

A compromise between analysis time and analysis precision.

(Coq implementation: see file Deadcode.v)
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Dead code elimination

The program transformation eliminates assignments to dead variables:

x := a becomes SKIP if x is not live “after” the assignment

Presented as a function dce : com→ VS.t→ com

taking the set of variables live “after” as second parameter
and maintaining it during its traversal of the command.

(Implementation & examples in file Deadcode.v)
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The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!
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Liveness as an information flow property

Consider two executions of the same command c in different initial states:

c/s1 ⇒ s2

c/s ′1 ⇒ s ′2

Assume that the initial states agree on the variables live(c , L) that are
live “before” c :

∀x ∈ live(c , L), s1(x) = s ′1(x)

Then, the two executions terminate on final states that agree on the
variables L live “after” c :

∀x ∈ L, s2(x) = s ′2(x)

The proof of semantic preservation for dead-code elimination follows this
pattern, relating executions of c and dce c L instead.
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Agreement and its properties

Definition agree (L: VS.t) (s1 s2: state) : Prop :=

forall x, VS.In x L -> s1 x = s2 x.

Agreement is monotonic w.r.t. the set of variables L:

Lemma agree_mon:

forall L L’ s1 s2,

agree L’ s1 s2 -> VS.Subset L L’ -> agree L s1 s2.

Expressions evaluate identically in states that agree on their free variables:

Lemma aeval_agree:

forall L s1 s2, agree L s1 s2 ->

forall a, VS.Subset (fv_aexp a) L -> aeval s1 a = aeval s2 a.

Lemma beval_agree:

forall L s1 s2, agree L s1 s2 ->

forall b, VS.Subset (fv_bexp b) L -> beval s1 b = beval s2 b.
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Agreement and its properties

Agreement is preserved by parallel assignment to a variable:

Lemma agree_update_live:

forall s1 s2 L x v,

agree (VS.remove x L) s1 s2 ->

agree L (update s1 x v) (update s2 x v).

Agreement is also preserved by unilateral assignment to a variable that is
dead “after”:

Lemma agree_update_dead:

forall s1 s2 L x v,

agree L s1 s2 -> ~VS.In x L ->

agree L (update s1 x v) s2.
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Forward simulation for dead code elimination

For terminating source programs:

Theorem dce_correct_terminating:

forall st c st’, c / st ==> st’ ->

forall L st1,

agree (live c L) st st1 ->

exists st1’, dce c L / st1 ==> st1’ /\ agree L st’ st1’.

(Proof: a simple induction on the derivation of c / st ==> st’.)

st

st ′

st1

st ′1

agree (live c L)

ceval c ceval (dce c L)

agree L
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Forward simulation for dead code elimination

The result extends simply to diverging source programs:

Theorem dce_correct_diverging:

forall st c L st1,

c / st ==> ∞ ->

agree (live c L) st st1 ->

dce c L / st1 ==> ∞.

s

∞

s1

∞

agree (live c a)

cevalinf c cevalinf (dce c a)

(Exercises: re-do the proof using small-step or denotational semantics.)
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Knaster-Tarski’s fixpoint theorem

Let A,≤ be a partially ordered type. Consider F : A→ A.

Theorem (Knaster-Tarski)

The sequence
⊥, F (⊥), F (F (⊥)), . . . , F n(⊥), . . .

converges to the smallest fixpoint of F , provided that

F is increasing: x ≤ y ⇒ F (x) ≤ F (y).

⊥ is a smallest element.

All strictly ascending chains x0 < x1 < . . . < xn are finite.

This provides an effective way to compute fixpoints.
(See Coq file Fixpoint.v).
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The ascending chain condition in Coq

Captured by well-founded orderings.

Variable A : Type.

Variable R : A -> A -> Prop.

Inductive Acc (x: A) : Prop :=

| Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.

Definition well_founded := forall a:A, Acc a.

Since Acc is an inductive predicate, Acc x holds iff all chains
xn R xn−1 R · · · R x1 R x are finite.

Therefore, well_founded holds iff the ascending chain condition is true.

Moreover, induction on a derivation of Acc x ⇐⇒ Noetherian induction.
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Examples of well-founded orderings

fun (x y: nat) => x < y

fun (x y: nat) => y < x <= N

fun (x y: A) => measure x < measure y

where measure: A -> nat

Lexicographic product of two well-founded orderings.
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Ordering subsets

For liveness analysis of loops, we need to compute a fixpoint of the
operator

F = λX . L ∪ FV (b) ∪ live(c ,X )

over sets X of variables, ordered by inclusion.

This ordering has infinite ascending chains!

∅ ⊂ {x1} ⊂ {x1, x2} ⊂ · · ·

We need to exploit two facts:

that there are finitely many variables x1, . . . , xn
mentioned in a given program;

that liveness analysis manipulates only subsets of {x1, . . . , xn}.
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Dependent types to the rescue

Let U : VS.t be a finite set of variables. Define the type

Definition vset : Type := { X : VS.t | VS.Subset X U }

Elements of vset are pairs of an X: VS.t and a proof that
VS.Subset X U holds.
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Subset types, a.k.a. Sigma-types

Defined in the Coq standard library:

Inductive sig (A:Type) (P:A -> Prop) : Type :=

exist : forall x:A, P x -> sig A P.

Notation "{ x | P }" := (sig (fun x => P)).

Definition proj1_sig (A: Type) (P: A -> Prop) (x: sig A P) : A :=

match x with exist a b => a end.

Definition proj2_sig (A: Type) (P: A -> Prop) (x: sig A P)

: P (proj1_sig A P x) :=

match x with exist a b => b end.
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Application to liveness analysis

In file Fixpoints.v:

Redefine usual set operations and free variable computations over the
type vset (of subsets of U).

Show that the ordering ⊂ over vset is well-founded.
(The cardinal of the complement card(U \ X ) strictly decreases.)

This enables us to take smallest fixpoints of monotone operators over
vset . . .

. . . making it possible to compute the live variables of a while loop
exactly.
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The register allocation problem

Place the variables used by the program (in unbounded number) into:

either hardware registers
(very fast access, but available in small quantity)

or memory locations (often stack-allocated)
(available in unbounded quantity, but slower access)

Try to maximize the use of hardware registers.

(A crucial step for the generation of efficient machine code.)
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Approaches to register allocation

Naive approach (injective allocation):

Assign the N most used variables to the N available registers.

Assign the remaining variables to memory locations.

Optimized approach (non-injective allocation):

Notice that two variables can share a register
as long as they are not simultaneously live.
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Example of register sharing

(def x)
x := . . .

(use x)
. . . x . . .

(def y)
y := . . .

(use y)
. . . y . . .

(use y)
. . . y . . .

x dead

x live

y dead

y live

(def R)
R := . . .

(use R)
. . .R . . .

(def R)
R := . . .

(use R)
. . .R . . .

(use R)
. . .R . . .
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Register allocation for IMP

Properly done:

1 Break complex expressions by introducing temporaries.
(E.g. x = (a + b) * y becomes tmp = a + b; x = tmp * y.)

2 Translate IMP to a variant IMP′ that uses registers ∪ memory
locations instead of variables.

Simplified as follows in this lecture:

1 Do not break expressions.

2 Translate from IMP to IMP, by renaming identifiers.
(Convention: low-numbered identifiers ≈ hardware registers.)
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The program transformation

Assume given a “register assignment” f : id→ id.

The program transformation consists of:

Renaming variables: all occurrences of x become f x .

Dead code elimination:

x ::= a −→ SKIP if x is dead “after”

Coalescing:
x ::= y −→ SKIP if f x = f y
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Correctness conditions on the register assignment

Clearly, not all register assignments f preserve semantics.

Example: assume f x = f y = f z = R

x ::= 1; R ::= 1;

y ::= 2; ----> R ::= 2;

z ::= x + y; R ::= R + R;

Computes 4 instead of 3 . . .

What are sufficient conditions over f ? Let’s discover them by reworking
the proof of dead code elimination.
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Agreement, revisited

Definition agree (L: VS.t) (s1 s2: state) : Prop :=

forall x, VS.In x L -> s1 x = s2 (f x).

An expression and its renaming evaluate identically in states that agree on
their free variables:

Lemma aeval_agree:

forall L s1 s2, agree L s1 s2 ->

forall a, VS.Subset (fv_aexp a) L ->

aeval s1 a = aeval s2 (rename_aexp a).

Lemma beval_agree:

forall L s1 s2, agree L s1 s2 ->

forall b, VS.Subset (fv_bexp b) L ->

beval s1 b = beval s2 (rename_bexp b).
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Agreement, revisited

As before, agreement is monotonic w.r.t. the set of variables L:

Lemma agree_mon:

forall L L’ s1 s2,

agree L’ s1 s2 -> VS.Subset L L’ -> agree L s1 s2.

As before, agreement is preserved by unilateral assignment to a variable
that is dead “after”:

Lemma agree_update_dead:

forall s1 s2 L x v,

agree L s1 s2 -> ~VS.In x L ->

agree L (update s1 x v) s2.
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Agreement, revisited

Agreement is preserved by parallel assignment to a variable x and its
renaming f x , but only if f satisfies a non-interference condition (in red
below):

Lemma agree_update_live:

forall s1 s2 L x v,

agree (VS.remove x L) s1 s2 ->

(forall z, VS.In z L -> z <> x -> f z <> f x) ->

agree L (update s1 x v) (update s2 (f x) v).

Counter-example: assume f x = f y = R.
agree {y} (x = 0, y = 0) (R = 0) holds, but
agree {x ; y} (x = 1, y = 0) (R = 1) does not.
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A special case for moves

Consider a variable-to-variable copy x ::= y .
In this case, the value v assigned to x is not arbitrary, but known to be
s1 y . We can, therefore, weaken the non-interference criterion:

Lemma agree_update_move:

forall s1 s2 L x y,

agree (VS.union (VS.remove x L) (VS.singleton y)) s1 s2 ->

(forall z, VS.In z L -> z <> x -> z <> y -> f z <> f x) ->

agree L (update s1 x (s1 y)) (update s2 (f x) (s2 (f y))).

This makes it possible to assign x and y to the same location, even if x
and y are simultaneously live.
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The interference graph

The various non-interference constraints f x 6= f y can be represented as
an interference graph:

Nodes = program variables.

Undirected edge between x and y =
x and y cannot be assigned the same location.

Chaitin’s algorithm to construct this graph:

For each move x ::= y , add edges between x and every variable z live
“after” except x and y .

For each other assignment x ::= a, add edges between x and every
variable z live “after” except x .
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Example of an interference graph

r := a;

q := 0;

WHILE b <= r DO

r := r - b;

q := q + 1

END

a

b

q

r

(Full edge = interference; dotted edge = preference.)
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Register allocation as a graph coloring problem
(G. Chaitin, 1981; P. Briggs, 1987)

Color the interference graph, assigning a register or memory location to
every node;

under the constraint that the two ends of an interference edge have
different colors;

with the objective to

minimize the number (or total weight) of nodes that are colored by a
memory location

maximize the number of preference edges whose ends have the same
color.

(A NP-complete problem in general, but good linear-time heuristics exist.)
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Example of coloring

a

b

q

r

a

b

q

r

yellow := yellow;

green := 0;

WHILE red <= yellow DO

yellow := yellow - red;

green := green + 1

END
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What needs to be proved in Coq?

Full compiler proof:
formalize and prove correct a good graph coloring heuristic.

George and Appel’s Iterated Register Coalescing ≈ 6 000 lines of Coq.

Validation a posteriori:
invoke an external, unproven oracle to compute a candidate allocation;
check that it satisfies the non-interference conditions;
abort compilation if the checker says false.
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The verified transformation–verified validation spectrum

transformation transformation

validator

×

transformation

untrusted solver

×

checker

Verified transformation Verified translation validation

External solver with verified validation

= formally verified

= not verified
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Validating candidate allocations in Coq

It is easy to write a Coq boolean-valued function

correct_allocation: (id -> id) -> com -> VS.t -> bool

that returns true only if the expected non-interference properties are
satisfied.

(See file Regalloc.v.)
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Semantic preservation

The proofs of forward simulation that we did for dead code elimination
then extend easily, under the assumption that correct_allocation
returns true:

Theorem transf_correct_terminating:

forall st c st’, c / st ==> st’ ->

forall L st1, agree (live c L) st st1 ->

correct_allocation c L = true ->

exists st1’, transf_com c L / st1 ==> st1’ / agree L st’ st1’.

Theorem transf_correct_diverging:

forall st c L st1,

c / st ==> ∞ ->

agree (live c L) st st1 ->

correct_allocation c L = true ->

transf_com c L / st1 ==> ∞.
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Part VII

A generic static analyzer
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A generic static analyzer

16 Introduction to static analysis

17 Static analysis as an abstract interpretation

18 An abstract interpreter in Coq

19 Improving the generic static analyzer
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Static analysis in a nutshell

Statically infer properties of a program that are true of all executions.

At this program point, 0 < x ≤ y and pointer p is not NULL.

Emphasis on infer: no programmer intervention required.
(E.g. no need to annotate the source with loop invariants.)

Emphasis on statically:

Inputs to the program are unknown.

Analysis must always terminate.

Analysis must run in reasonable time and space.
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Examples of properties that can be statically inferred

Properties of the value of a single variable: (value analysis)

x = n constant propagation

x > 0 or x = 0 or x < 0 signs

x ∈ [n1, n2] intervals

x = n1 (mod n2) congruences

valid(p[n1 . . . n2]) pointer validity

p pointsTo x or p 6= q (non-) aliasing of pointers

(n, n1, n2 are constants determined by the analysis.)
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Examples of properties that can be statically inferred

Properties of several variables: (relational analysis)

∑
aixi ≤ c polyhedras

±x1 ± · · · ± xn ≤ c octagons

expr1 = expr2 Herbrand equivalences, a.k.a. value numbering

(ai , c are rational constants determined by the analysis.)

“Non-functional” properties:

Memory consumption.

Worst-case execution time (WCET).
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Using static analysis for optimization

Applying algebraic laws when their conditions are met:

x / 4 → x >> 2 if analysis says x ≥ 0

x + 1 → 1 if analysis says x = 0

Optimizing array and pointer accesses:

a[i]=1; a[j]=2; x=a[i]; → a[i]=1; a[j]=2; x=1;

if analysis says i 6= j

*p = a; x = *q; → x = *q; *p = a;

if analysis says p 6= q

Automatic parallelization:

loop1; loop2 → loop1 ‖ loop2 if polyh(loop1) ∩ polyh(loop2) = ∅

X. Leroy (INRIA) Proving a compiler Oregon 2011 186 / 265



Using static analysis for verification
(Also known as “static debugging”)

Use the results of static analysis to prove the absence of run-time errors:

b ∈ [n1, n2] ∧ 0 /∈ [n1, n2] =⇒ a/b cannot fail

valid(p[n1 . . . n2]) ∧ i ∈ [n1, n2] =⇒ ∗(p + i) cannot fail

Signal an alarm otherwise.
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True alarms, false alarms

True alarm False alarm
(dangerous behavior) (imprecise analysis)

More precise analysis (polyhedra instead of intervals):
false alarm goes away.
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Some properties verifiable by static analysis

Absence of run-time errors:

Arrays and pointers:
I No out-of-bound accesses.
I No dereferencing of null pointers.
I No accesses after a free.
I Alignment constraints of the processor.

Integers:
I No division by zero.
I No overflows in (signed) arithmetic.

Floating-point numbers:
I No arithmetic overflows (infinite results).
I No undefined operations (not-a-number results).
I No catastrophic cancellations.

Variation intervals for program outputs.
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Floating-point subtleties and their analysis

Taking rounding into account:

float x, y, u, v; // x ∈ [1.00025, 2]
// y ∈ [0.5, 1]

u = 1 / (x - y); // OK

v = 1 / (x*x - y*y); // ALARM: undefined result

First division: (x − y) ∈ [0.00025, 1.5] and division cannot result in infinity
or not-a-number.

Second division:

(x∗x) ∈ [1, 4] (float rounding!)
(y∗y) ∈ [0.25, 1]

(x∗x − y∗y) ∈ [0, 3.75]

and division by zero is possible, resuting in +∞
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A generic static analyzer

16 Introduction to static analysis

17 Static analysis as an abstract interpretation

18 An abstract interpreter in Coq

19 Improving the generic static analyzer
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Abstract interpretation for dummies

“Execute” the program using a non-standard semantics that:

Computes over an abstract domain of the desired properties
(e.g. “x ∈ [n1, n2]” for interval analysis)
instead of concrete “things” like values and states.

Handles boolean conditions, even if they cannot be resolved statically.
(THEN and ELSE branches of IF are considered both taken.)
(WHILE loops execute arbitrarily many times.)

Always terminates.
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Orthodox presentation: collecting semantics

Define a semantics that collects all possible concrete states at every
program point.

// initial value of x is N

y := 1;

(x , y) ∈ { (N, 1) }
WHILE x > 0 DO

(x , y) ∈ { (N, 1); (N − 1, 2); . . . ; (1, 2N−1) }
y := y * 2;

(x , y) ∈ { (N, 2); (N − 1, 4); . . . ; (1, 2N) }
x := x - 1

(x , y) ∈ { (N − 1, 2); . . . ; (0, 2N) }
END

(x , y) ∈ { (0, 2N) }
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Orthodox presentation: Galois connection

Define a lattice A,≤ of abstract states and two functions:

Abstraction function α : sets of concrete states → abstract state

Concretization function γ : abstract state → sets of concrete states

(x , y) ∈ [1, 5]× [1, 3]

α γ

α and γ monotonic; X ⊆ γ(α(X )); and x ] ≤ α(γ(x ])).
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Orthodox presentation: calculating abstract operators

For each operation of the language, compute its abstract counterpart
(operating on elements of A instead of concrete values and states).

Example: for the + operator in expressions,

a1 +] a2 = α{n1 + n2 | n1 ∈ γ(a1), n2 ∈ γ(a2)}
(. . . calculations omitted . . . )

[l1, u1] +] [l2, u2] = [l1 + l2, u1 + u2]

+] is sound and optimally precise by construction.
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Pedestrian Coq presentation

Focus on the concretization relation x ∈ γ(y) viewed as a 2-place
predicate concrete-thing → abstract-thing → Prop.

Forget about the abstraction function α
(generally not computable; sometimes not uniquely defined.)

Forget about calculating the abstract operators: just guess their definitions
and prove their soundness.

Forget about optimality; focus on soundness only.
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A generic static analyzer

16 Introduction to static analysis

17 Static analysis as an abstract interpretation

18 An abstract interpreter in Coq

19 Improving the generic static analyzer

X. Leroy (INRIA) Proving a compiler Oregon 2011 197 / 265

Abstract domains in Coq

Specified as module interfaces:

VALUE_ABSTRACTION: to abstract integer values.

STATE_ABSTRACTION: to abstract states.

(See Coq file Analyzer1.v.)

Each interface declares:

A type t of abstract “things”

A predicate vmatch/smatch relating concrete and abstract things.

Abstract operations on type t

(arithmetic operations for values; get and set operations for stores).

Soundness properties of these operations.
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Abstract interpretation of arithmetic expressions

Let V be a value abstraction and S a corresponding state abstraction.

Fixpoint abstr_eval (s: S.t) (a: aexp) : V.t :=

match a with

| ANum n => V.of_const n

| AId x => S.get s x

| APlus a1 a2 => V.add (abstr_eval s a1) (abstr_eval s a2)

| AMinus a1 a2 => V.sub (abstr_eval s a1) (abstr_eval s a2)

| AMult a1 a2 => V.mul (abstr_eval s a1) (abstr_eval s a2)

end.

(What else could we possibly write?)
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Abstract interpretation of commands

Computes the abstract state “after” executing command c in initial
abstract state s.

Fixpoint abstr_interp (s: S.t) (c: com) : S.t :=

match c with

| SKIP => s

| (x ::= a) => S.set s x (abstr_eval s a)

| (c1; c2) => abstr_interp (abstr_interp s c1) c2

| IFB b THEN c1 ELSE c2 FI =>

S.join (abstr_interp s c1) (abstr_interp s c2)

| WHILE b DO c END =>

fixpoint (fun x => S.join s (abstr_interp x c)) s

end.
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Abstract interpretation of commands

Fixpoint abstr_interp (s: S.t) (c: com) : S.t :=

match c with

| SKIP => s

| (x ::= a) => S.set s x (abstr_eval s a)

| (c1; c2) => abstr_interp (abstr_interp s c1) c2

| IFB b THEN c1 ELSE c2 FI =>

S.join (abstr_interp s c1) (abstr_interp s c2)

| WHILE b DO c END =>

fixpoint (fun x => S.join s (abstr_interp x c)) s

end.

For the time being, we do not try to guess the value of a boolean test
→ consider the THEN branch and the ELSE branch as both taken
→ take an upper bound of their final states.
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Abstract interpretation of commands

Fixpoint abstr_interp (s: S.t) (c: com) : S.t :=

match c with

| SKIP => s

| (x ::= a) => S.set s x (abstr_eval s a)

| (c1; c2) => abstr_interp (abstr_interp s c1) c2

| IFB b THEN c1 ELSE c2 FI =>

S.join (abstr_interp s c1) (abstr_interp s c2)

| WHILE b DO c END =>

fixpoint (fun x => S.join s (abstr_interp x c)) s

end.

Let s ′ be the abstract state “before” the loop body c .

entering c on the first iteration ⇒ s ≤ s ′.

re-entering c after ⇒ abstr interp s ′ c ≤ s ′.

We therefore compute a post-fixpoint s ′ with s t abstr interp s ′ c ≤ s ′
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Soundness results

Show that all concrete executions produce results that belong to the
abstract things inferred by abstract interpretation.

Lemma abstr_eval_sound:

forall st s, S.smatch st s ->

forall a, V.vmatch (aeval st a) (abstr_eval s a).

Theorem abstr_interp_sound:

forall c st st’ s,

S.smatch st s ->

c / st ==> st’ ->

S.smatch st’ (abstr_interp s c).

(Easy structural inductions on a and c.)
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An example of state abstraction

Parameterized by a value abstraction V.

Abstract states = ⊥ | finite maps ident → V.t. (Default value: V.top.)

Appropriate for all non-relational analyses.
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An example of value abstraction: constants

Abstract domain = the flat lattice of integers:

> = nat

⊥ = ∅

{0} {1} {2} {3} {4} . . .

Obvious interpretation of operations:

⊥+] x = x +] ⊥ = ⊥ >+] x = x +] > = > {n1}+] {n2} = {n1 + n2}
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A generic static analyzer

16 Introduction to static analysis

17 Static analysis as an abstract interpretation

18 An abstract interpreter in Coq

19 Improving the generic static analyzer
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First improvement: static analysis of boolean expressions

Our analyzer makes no attempt at analyzing boolean expressions
→ both arms of an IF are always assumed taken.

Can do better when the static information available allows to statically
resolve the IF. Example:

x := 0;

IF x = 0 THEN y := 1 ELSE y := 2 FI

Constant analysis in its present form returns y ] = >
(joining the two branches where y ] = {1} and y ] = {2}.)

Since x ] = {0} before the IF, the ELSE branch cannot be taken, hence we
should have y ] = {1} at the end.
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Static analysis of boolean expressions

Even when the boolean expression cannot be resolved statically, the
analysis can learn much from which branch of an IF is taken.

x] = > initially

IF x = 0 THEN

learn that x] = {0}
y := x + 1

hence y ] = {1}
ELSE

y := 1

y ] = {1} as well

FI

hence y ] = {1}, not >
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Static analysis of boolean expressions

We can also learn from the fact that a WHILE loop terminates:

x] = > initially

WHILE not (x = 42) DO

x := x + 1

DONE

learn that x] = 42] = {42}

More realistic example using intervals instead of constants:

x] = > = [0, ∞] initially

WHILE x <= 1000 DO

x := x + 1

DONE

learn that x] = [1001, ∞]
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Inverse analysis of expressions

learn from test s b res :
return abstract state s ′ ≤ s reflecting the fact that b (a boolean
expression) evaluates to res (one of true or false).

learn from eval s a res :
return abstract state s ′ ≤ s reflecting the fact that a (an arithmetic
expression) evaluates to a value matching res (an abstract value).

Examples:

learn from test (x 7→ >) (x = 0) true = (x 7→ {0})
learn from test (x 7→ {1}) (x = 0) true = ⊥
learn from eval (x 7→ >) (x + 1) {10} = (x 7→ {9})
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Inverse analysis of expressions

The abstract domain for values is enriched with inverse abstract operators
add_inv, etc and inverse abstract tests eq_inv, etc.

Examples with intervals:

le_inv [0,10] [2,5] = ([0,5], [2,5])

add_inv [0,1] [0,1] [0,0] = ([0,0], [0,0])
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Inverse analysis of expressions

In orthodox presentation:

le inv x ] y ] = (α{x | x ∈ γ(x ]), y ∈ γ(y ]), x ≤ y},
α{y | x ∈ γ(x ]), y ∈ γ(y ]), x ≤ y})

add inv x ] y ] z] = (α{x | x ∈ γ(x ]), y ∈ γ(y ]), x + y ∈ γ(z])},
α{y | x ∈ γ(x ]), y ∈ γ(y ]), x + y ∈ γ(z])}

In Coq: see file Analyzer2.v.
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Using inverse analysis

Fixpoint abstr_interp (s: S.t) (c: com) : S.t :=

match c with

| SKIP => s

| x ::= a => S.set s x (abstr_eval s a)

| (c1; c2) => abstr_interp (abstr_interp s c1) c2

| IFB b THEN c1 ELSE c2 FI =>

S.join (abstr_interp (learn_from_test s b true) c1)

(abstr_interp (learn_from_test s b false) c2)

| WHILE b DO c END =>

let s’ :=

fixpoint

(fun x => S.join s

(abstr_interp (learn_from_test x b true) c))

s in

learn_from_test s’ b false

end.
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Second improvement: accelerating convergence

Consider the computation of (post-) fixpoints when analyzing loops.

Remember the two approaches previously discussed:

1 The mathematician’s approach based on the Knaster-Tarski theorem.
(Only if the abstract domain is well-founded, e.g. the domain of
constants.)

2 The engineer’s approach:
force convergence to > after a bounded number of iterations.

1- is often not applicable or too slow.
2- produces excessively coarse results.
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Non-well-founded domains

Many interesting abstract domains are not well-founded.

Example: intervals.

[0, 0] ⊂ [0, 1] ⊂ [0, 2] ⊂ · · · ⊂ [0, n] ⊂ · · ·
This causes problems for analyzing non-counted loops such as

x := 0;

WHILE unpredictable-condition DO x := x + 1 END

(x ] is successively [0, 0] then [0, 1] then [0, 2] then . . . )
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Slow convergence

In other cases, the fixpoint computation via Tarski’s method does
terminate, but takes too much time.

x := 0;

WHILE x <= 1000 DO x := x + 1 END

(Starting with x ] = [0, 0], it takes 1000 iterations to reach x ] = [0, 1000],
which is a fixpoint.)
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Imprecise convergence

The engineer’s algorithm (return > after a fixed number of unsuccessful
iterations) does converge quickly, but loses too much information.

x := 0;

y := 0;

WHILE x <= 1000 DO x := x + 1 END

In the final abstract state, not only x ] = >, but also y ] = >.
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Widening

A widening operator ∇ : A → A→ A computes an upper bound of its
second argument in such a way that the following fixpoint iteration always
converges (and converges quickly):

X0 = ⊥ Xi+1 =

{
Xi if F (Xi ) ≤ Xi

Xi ∇ F (Xi ) otherwise

The limit X of this sequence is a post-fixpoint: F (X ) ≤ X .

For intervals of natural numbers, the classic widening operator is:

[l1, u1]∇ [l2, u2] = [(if l2 < l1 then 0 else l1,
if u2 > u1 then ∞ else u1)]
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Example of widening

x := 0;

WHILE x <= 1000 DO x := x + 1 END

The transfer function for x ’s abstraction is
F (X ) = [0, 0] ∪ (X ∩ [0, 1000]) + 1.

X0 = ⊥
X1 = X0 ∇ F (X0) = ⊥∇ [0, 0] = [0, 0]
X2 = X1 ∇ F (X1) = [0, 0]∇ [0, 1] = [0,∞]
X2 is a post-fixpoint: F (X2) = [0, 1001] ⊆ [0,∞].

Final abstract state is x ] = [0,∞] ∩ [1001,∞] = [1001,∞].
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Widening in action

X

F (X )

Tarski iteration

Iteration with widening
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Narrowing

The quality of a post-fixpoint can be improved by iterating F some more,
combining it with narrowing.

A narrowing operator ∆ : A → A→ A computes a middle point between
its two arguments in such a way that the following fixpoint iteration
always converges (and converges quickly):

Y0 = a post-fixpoint Yi+1 = Yi ∆ F (Yi )

The limit Y of this sequence is a post-fixpoint: F (Y ) ≤ Y , as well as any
of the Yi .

For intervals of natural numbers, the classic narrowing operator is:

[l1, u1] ∆ [l2, u2] = [l1, if u1 =∞ then u2 else u1)]
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Widening and narrowing in action

X

F (X )

Tarski iteration

Iteration with widening

Post-iteration with narrowing
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Example of narrowing

x := 0;

WHILE x <= 1000 DO x := x + 1 END

The transfer function for x ’s abstraction is
F (X ) = [0, 0] ∪ (X ∩ [0, 1000]) + 1.

The post-fixpoint found by iteration with narrowing is [0,∞].

Y0 = [0,∞]
Y1 = Y0 ∆ F (Y0) = [0,∞] ∆ [0, 1001] = [0, 1001]
Y2 = Y1 ∆ F (Y1) = [0, 1000] ∆ [0, 1001] = [0, 1001]

Final post-fixpoint is Y1 (actually, a fixpoint).

Final abstract state is x ] = [0, 1001] ∩ [1001,∞] = [1001, 1001].
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Specification of widening and narrowing operators

For reference:

y ≤ x ∇ y for all x , y .

For all increasing sequences x0 ≤ x1 ≤ . . ., the sequence
y0 = x0, yi+1 = yi ∇ xi is not strictly increasing.

y ≤ x ∆ y ≤ x for all y ≤ x .

For all decreasing sequences x0 ≥ x1 ≥ . . ., the sequence
y0 = x0, yi+1 = yi ∆ xi is not strictly decreasing.
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Coq implementation of accelerated convergence
Because we have not proved the monotonicity of abstr_interp nor the
nice properties of widening and narrowing, we still bound arbitrarily the
number of iterations.

Fixpoint iter_up (n: nat) (s: S.t) : S.t :=

match n with

| 0 => S.top

| S n1 =>

let s’ := F s in

if S.ble s’ s then s else iter_up n1 (S.widen s s’)

end.

Fixpoint iter_down (n: nat) (s: S.t) : S.t :=

match n with

| 0 => s

| S n1 =>

let s’ := S.narrow s (F s) in

if S.ble (F s’) s’ then iter_down n1 s’ else s

end.

Definition fixpoint (start: S.t) : S.t :=

iter_down num_iter_down (iter_up num_iter_up start).
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In summary. . .

The abstract interpretation approach leads to highly modular static
analyzers:

The language-specific parts of the analyzer are written once and for
all.

It can then be combined with various abstract domains, which are
largely independent of the programming language analyzed.

Domains can be further combined together (e.g. by reduced product).

The technical difficulty is concentrated in the definition and
implementation of domains, esp. the widening and narrowing operators.

Relational analyses are much more difficult (but much more precise!) than
the non-relational analyses presented here.
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Static analysis tools in the real world

General-purpose tools:

Coverity

MathWorks Polyspace verifier.

Frama-C value analyzer (open source!)

Tools specialized to an application area:

Microsoft Static Driver Verifier (Windows system code)

Astrée (control-command code at Airbus)

Fluctuat (symbolic analysis of floating-point errors)

Tools for non-functional properties:

aiT WCET (worst-case execution time)

aiT StackAnalyzer (stack consumption)
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Part VIII

Compiler verification in the large
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The classroom setting

IMP

V.M.

Compiler

Static
analysis

Hoare
logic
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The reality of critical embedded software

C

Executable

Assembly

ScadeSimulink

Hand-written

Compiler

Code gen. Code gen.

Test

Code
reviews

Static
analyzers

Program
prover

Model
checker
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Requirements for qualification
(E.g. DO178-B in avionics.)

Compilers and code generation tools: Can introduce bugs in programs!

Either: the code generator is qualified at the same level of assurance
as the application.
(Implies: much testing, rigorous development process, no recursion,
no dynamic allocation, . . . )

Or: the generated code needs to be qualified as if hand-written.
(Implies: testing, code review and analysis on the generated code . . . )

Verification tools used for bug-finding:
Cannot introduce bugs, just fail to notice their presence.
→ can be qualified at lower levels of assurance.

Verification tools used to establish the absence of certain bugs:
Status currently unclear.
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The compiler dilemma

If the compiler is untrusted (= not qualified at the highest levels of
assurance):

We still need to review & analyze the generated assembly code,
which implies turning off optimizations,
and is costly, and doesn’t scale.

We cannot fully trust the results obtained by formal verification of the
source program.

Many benefits of programming in a high-level language are lost.

Yet: the traditional techniques to qualify high-assurance software do not
apply to compilers.

Could formal verification of the compiler help?
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Compiler verification in the large
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The CompCert project
(X.Leroy, S.Blazy, et al — http://compcert.inria.fr/)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a subset of C.

Target language: PowerPC and ARM assembly.

Generates reasonably compact and fast code
⇒ some optimizations.

This is “software-proof codesign” (as opposed to proving an existing
compiler).

Uses Coq to mechanize the proof of semantic preservation and also to
implement most of the compiler.
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The subset of C supported

Supported:

Types: integers, floats, arrays, pointers, struct, union.

Operators: arithmetic, pointer arithmetic.

Control: if/then/else, loops, simple switch, goto.

Functions, recursive functions, function pointers.

Not supported:

The long long and long double types.

Unstructured switch, longjmp/setjmp.

Variable-arity functions.

Supported via de-sugaring (not proved!):

Block-scoped variables.

Assignment & pass-by-value of struct and union

Bit-fields.
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The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

linearization

of the CFG

spilling, reloading

calling conventions

layout of stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls,

(LCM), (Software pipelining)

(Instruction scheduling)
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The whole CompCert compiler

AST C

AST Asm

C source

AssemblyExecutable

parsing, construction of an AST

type-checking, de-sugaring

V
erifi

ed
co

m
p

iler

printing of

asm syntax

assembling

linking

Type reconstruction

Graph coloring

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB
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Verified in Coq

Theorem transf_c_program_is_refinement:

forall p tp,

transf_c_program p = OK tp ->

(forall beh, exec_C_program p beh -> not_wrong beh) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

A composition of

13 proofs of the “safe forward simulation” kind

1 proof of the “safe backward simulation” kind.
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Observable behaviors

Inductive program_behavior: Type :=

| Terminates: trace -> int -> program_behavior

| Diverges: trace -> program_behavior

| Reacts: traceinf -> program_behavior

| Goes_wrong: trace -> program_behavior.

trace = list of input-output events.
traceinf = infinite list (stream) of i-o events.

I/O events are generated for:

Calls to external functions (system calls)

Memory accesses to global volatile variables (hardware devices).
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Styles of semantics used (as a function of time)

Clight . . . Cminor RTL . . . Mach Asm

1st gen. big-step “mixed-step” small-step
(b.s. for calls,

(s.s. otherwise)

2nd gen. big-step small-step small-step
(+ divergence) (coinductive) (w/ call stacks)

3rd gen. small-step small-step small-step
(+ goto (w/ continuations) (w/ call stacks)
& tailcalls)
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The Coq proof

4 person-years of work.

Size of proof: 50000 lines of Coq.

Size of program proved: 8000 lines.

Low proof automation (could be improved).

13%

Code

8%

Sem.

17%

Statements

55%

Proof scripts

7%

Misc
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Programmed in Coq

The verified parts of the compiler are directly programmed in Coq’s
specification language, in pure functional style.

Monads are used to handle errors and state.

Purely functional data structures.

Coq’s extraction mechanism produces executable Caml code from these
Coq definitions, which is then linked with hand-written Caml parts.

Claim: pure functional programming is the shortest path between an
executable program and its proof.
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Performance of generated code
(On a PowerPC G5 processor)
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Compiler verification in the large

20 Compiler issues in critical software

21 The CompCert project

22 Status and ongoing challenges

23 Closing
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Preliminary conclusions

At this stage of the Compcert experiment, the initial goal – proving
correct a realistic compiler – appears feasible.

Moreover, proof assistants such as Coq are adequate (but barely) for this
task.

What next?
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Enhancements to CompCert

Upstream:

Formalize some of the emulated features (bitfields, etc).

Is there anything to prove about the C parser? preprocessor??

Downstream:

Currently, we stop at assembly language with a C-like memory model.

Refine the memory model to a flat array of bytes.
(Issues with bounding the total stack size used by the program.)

Refine to real machine language?
(Cf. Moore’s Piton & Gypsy projects circa 1995)
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Enhancements to CompCert

In the middle:

More static analyses, esp. for nonaliasing.

More optimizations? Possibly using verified translation validation?

transformation transformation

validator

×

Verified transformation Verified translation validation

(See e.g. J.B. Tristan’s verified translation validators for instruction
scheduling, lazy code motion, and software pipelining.)
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Connections with hardware verification

Hardware verification:

A whole field by itself.

At the circuit level: a strong tradition of formal synthesis and
verification, esp. using model checking.

At the architectural level (machine language semantics, memory
model, . . . ): almost no publically available formal specifications, let
alone verifications.

A very nice work in this area: formalizing the ARM architecture and
validating it against the ARM6 micro-architecture.
(Anthony Fox et al, U. Cambridge).
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The ARM6 micro-architecture
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Figure 3: The ARM6 Data Path.
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The ARM6 instruction pipeline

0 1 2 3 4 5 6 7 8 9 10 11 12

a: sub D E

b: swp F D

c: add F D

b: swp F D E E E E

c: add F D E E

d: b F D E E E

e: mvn F

f: cmp F

a: sub F D

b: swp F

Figure 4: Pipeline flow for Example 1.

State \ Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

pipea,pipeaval b,T c,F b,T c,T d,T d,T d,T d,T e,T e,T f,T a,T b,T
pipeb,pipebval b,T c,F b,T c,T c,T c,T c,T d,T d,T e,T f,T a,T b,T
ireg,iregval a,T b,F c,F b,T b,T b,T b,T c,T c,T d,T d,T d,T a,T
ointstart F F F F F F F F F F F F F
onewinst T T T T F F F T F T F F T
opipebll T T T T F F F T F T T T T
nxtic data proc swp reg shift swp swp swp swp reg shift reg shift br br br data proc
nxtis t3 t3 t3 t3 t4 t5 t6 t3 t4 t3 t4 t5 t3

Table 8: The pipeline behaviour for Example 1.

instruction code prior to decode. (If the fetch and decode were always simultaneous then pipeb
would be redundant.) A fetch occurs on each execute cycle of the branch. With single-cycle
instructions fetch and decode occur simultaneously with the execute. From Figure 4 it is clear that
all but the first instruction is multi-cycle. The first instruction (sub) is single-cycle, but a further
two cycles are needed to re-fill the pipeline after pc is modified. Strictly speaking, these extra cycles
are deemed not to constitute part of the instruction’s execute stage but they are of significance from
a correctness standpoint.

Table 8 shows the pipeline behaviour with respect to the first thirteen components of the control
unit. The instruction labels have been used, in place of the instruction codes, to indicate the state
of the components pipea, pipeb and ireg. Observe that the components pipeaval, pipebval and
iregval are used to implement the re-filling of the pipeline (tagging invalidated instruction codes)
after the sub instruction writes to register pc. This differs from the branch instruction, which takes
three cycles to execute, re-filling the pipeline in the process.

The states are grouped together into blocks, with the cycle at the start of each block underlined.
This grouping corresponds with the temporal abstraction used in verifying the design. The under-
lined cycles are specified by an immersion, which gives the times at which data abstraction yields
ISA states. These states are characterised by the fact that the pipeline is ready for the first execute
cycle of the instruction in ireg.

19

Difficulty for verification:
several instructions are “in flight” at any given time.

Redeeming feature: synchrony. The machine state is determined as a
function of time and the initial state.
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Other source languages

Cminor PPC,ARMClight

Mini-MLGallina

GCminorGHC core

Lustre??

Spark Ada??

New problem: run-time system verification (allocator, GC, etc).
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Connections with verification tools

Subsets
of C

Verified
compiler

Code
generator

Static
analyzer

Model
checker

Program
prover
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Connections with verification tools

Consider other C-related tools involved in the production and verification
of critical software: code generators, static analyzers, model checkers,
program provers, . . .

(Long term) Formally verify these tools as well?
(E.g. verification condition generators, abstract interpreters, abstract
domains, etc)

(Medium term) Validate the operational semantics used in CompCert
against the other semantics used in these tools?
(E.g. axiomatic semantics, collecting semantics, etc)

(More modestly) Agree on a common subset of the C language?
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Towards shared-memory concurrency

Programs containing data races are generally compiled in a
non-semantic-preserving manner.

Issue #1: apparently atomic operations are decomposed into sequences of
instructions, exhibiting more behaviors.

x = *p + *p; || *p = 1;

t1 = load(p) || store(p, 1)

t2 = load(p)

x = add(t1,t2)

In Clight (top): final x ∈ {0, 2}.
In RTL (bottom): final x ∈ {0, 1, 2}.
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Towards shared-memory concurrency

Issue #2: weakly-consistent memory models, as implemented in hardware,
introduce more behaviors than just interleavings of loads and stores.

store(q, 1) || store(p, 1)

x = load(p) || y = load(q)

Interleaving semantics: (x , y) ∈ {(0, 1); (1, 0); (1, 1)}.
Hardware semantics: x = 0 and y = 0 is also possible!
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Plan A

Expose all behaviors in the semantics of all languages (source,
intermediate, machine):

“Very small step” semantics
(expression evaluation is not atomic).

Model of the hardware memory.

Turn off optimizations that are wrong in this setting.
(common subexpression elimination; uses of nonaliasing properties).

Prove backward simulation results for every pass.

→ The CompCertTSO project at Cambridge
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/
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Plan B

Restrict ourselves to data-race free source programs . . .

. . . as characterized by concurrent separation logic.
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Separation logic (quick reminder)

Like Hoare triples {P} c {Q},
but assertions P,Q control the memory footprint of commands c .

Application: the frame rule

{P} c {Q}

{P ? R} c {Q ? R}
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Concurrent separation logic (intutions)

Two concurrently-running threads do not interfere if their memory
footprints are disjoint:

{P1} c1 {Q1} {P2} c2 {Q2}

{P1 ? P2} (c1 ‖ c2) {Q1 ? Q2}

But how can two threads communicate through shared memory?
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Concurrent separation logic (intutions)

Locks L are associated with resource invariants R.

R’s footprint describes the set of shared data protected by lock L.

Locking ⇒ acquire rights to access this shared data.
Unlocking ⇒ forego rights to access this shared data.

{P} lock L {P ? R(L)}
{P ? R(L)} unlock L {P}
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Quasi-sequential semantics

(Hobor, Appel, Zappa Nardelli, Oracle Semantics for Concurrent Separation Logic,

ESOP 2008).

For parallel programs provable in concurrent separation logic, we can
restrict ourselves to “quasi-sequential” executions:

In between two lock / unlock operations, each thread executes
sequentially; other threads are stopped.

Interleaving at lock / unlock operations only.

Interleaving is determined in advance by an “oracle”.

Claim: quasi-sequential semantics and concrete semantics (arbitrary
interleavings + weakly-consistent memory) predict the same sets of
behaviors for programs provable in CSL.
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Verifying a compiler for data-race free programs

“Just” have to show that quasi-sequential executions are preserved by
compilation:

Easy?? extensions of the sequential case.

Can still use forward simulation arguments.

Most classic sequential optimizations remain valid.

The only “no-no”: moving memory accesses across lock and unlock

operations.

Work in progress, stay tuned . . .
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Compiler verification in the large
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To finish . . .

The formal verification of compilers and related programming tools

. . . could be worthwhile,

. . . appears to be feasible,

. . . and is definitely exciting!
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